《完全平方公式》的教学反思

时间:2023-12-13 10:33:14 教学反思 我要投稿

《完全平方公式》的教学反思(通用15篇)

  作为一位到岗不久的教师,课堂教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,如何把教学反思做到重点突出呢?下面是小编帮大家整理的《完全平方公式》的教学反思,仅供参考,希望能够帮助到大家。

《完全平方公式》的教学反思(通用15篇)

  《完全平方公式》的教学反思 1

  学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同。相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

  (1)切勿把此公式与平方差公式混淆,而随意写。

  (2)切勿把“乘积项”2ab中的2丢掉。

  (3)计算时,要先观察题目是否符合公式的条件。若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算。

  今后在教学中,要注意以下几点:

  1、让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的'结构特征。

  2、引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力。

  《完全平方公式》的教学反思 2

  这一节课主要研究完全平方公式的证明方法,关键是引导学生正确理解完全平方公式的推导过程,以及这两个公式的几何背景。

  这节课我做的比较好的方面:

  经历探索完全平方公式的过程,通过拼图游戏,从形到数又从数到形,让学生了解公式的几何背景,学生体会了数形结合的数学思想,并知道猜想的'结论必须加以验证,本节授课思维流畅,知识发生发展过程过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极,气氛活跃,教学效果较好。

  这节课采用小组自主探究,小组合作的学习方式,紧张而愉快,学生及相互交流的同时又相互合作,极大的调动了学生学习的热情同时我也比较关注那些积极动脑,热情参与的同学,及时的给予表扬和鼓励,进而促进课堂教学的有效性。

  从几何意义出发,激发学生的图形观,利用拼图游戏,使学生在动手的过程中发现结论,并通过小组合作,探究归纳公式,从而突出以学生为主体的的探究性学习原则。

  这节课做的不足的方面有对学生个别指导较少,应到各小组当中去积极参与学生的活动;学生拼图时间略微有些偏长,对后面的教学稍有影响,显的前松后紧。

  《完全平方公式》的教学反思 3

  本节课的教学已基本达到了教学目的。本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算。

  理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。并渗透建模、化归、对称、数形结合、逻辑推理等思想方法。经历探索完全平方公式的过程,培养学生的.发现能力、求简意识、应用意识、解决问题的能力和创新能力。培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思想品质。作用在于让其体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算,理解公式中的字母含义,及公式的应用。

  针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索、启发引导、合作交流展开教学。引导学生主动地进行观察、猜测、验证和交流,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索,边归纳,突出以学生为主体的探索性学习的原则。

  《完全平方公式》的教学反思 4

  公式法进行因式分解,除了逆用平方差公式之外,还有两个相对来说较难的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。

  逆用完全平方公式进行因式分解关键同样是搞清完全平方公式的结构特点:等号左边是一个二项式的平方,等号右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。

  有了前边学习完全平方公式为基础,逆用完全平方公式进行因式分解只需要“颠倒使用”即可:等号右边作为“条件”,左边作为“结果”,但对学生来说,还是相当困难的。

  逆用完全平方公式进行因式分解的步骤可分三步:

  1、写成“首平方,尾平方,2倍之积中间放”的形式。

  2、按公式写出“两项和的平方”的.形式,即因式分解。

  3、两项和中能合并同类项的合并。

  例题及练习的呈现次序尽量本着先易后难、先单一后综合的螺旋上升原则。

  1、a、b代表单独单项式,如:

  (1)m2—6m+9

  (2)4a2—4ab+b2

  2、a、b代表多项式,如:

  (1)(a+2b)2—8a(a+2b)+16a2

  (2)4(x+y)2+25—20(x+y)

  在此要有“整体思想”的意识,注意:相同部分作为一个整体然后再套用公式。

  3、先提取公因式,再用完全平方和(或差)公式如:

  (1)ay2—2a2y+a3

  (2)16xy2—9x2y—y2

  4、先转化一步,再用完全平方和(或差)公式,如:

  —m2+2mn—n2(2)3a2+6a+27

  尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题,如部分学生直接感到无从下手。

  《完全平方公式》的教学反思 5

  做得较好的方面:

  1、本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。

  2、本节课上学生体会了数形结合及转化的数学思想,并知道猜想的'结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。

  做得不足的方面:

  1、应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。

  2、对需要帮助的学生进行针对性的个别指导较少。

  3、对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算(a+b)2环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。

  《完全平方公式》的教学反思 6

  在进入三中这个大家庭里,我感受到了这个大家庭的爱,有来自领导,师傅,办公室同事的指导,深感欣慰。由于第一次教授初中数学,对于备学生和备教材缺乏全面理解,本节课的教学没有很好的完成教学目的标,本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应用公式进行简单的.计算。理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。探索完全平方公式的过程,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思想品质。

  通过本课,让学生体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算,理解公式中的字母含义,及公式的应用。

  通过本节课的教学得到如下收获:

  (1)这节课倡导了以学生为主,教师为辅的思想,留足了一定的时间让学生去发现探索、以及做练习。

  (2)采用了多媒体辅助教学,以较清晰的手段呈现了学生整个学习过程,让课堂更加直观明了,同时客容量也增大了。

  (3)让学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证。

  本节课采用了以小组自主探究的学习方式,整节课都在紧张而愉快的气氛中进行,学生活跃,能积极参与。教学中,比较关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,进而提高课堂教学的有效性。

  《完全平方公式》的教学反思 7

  本节课属于八年级数学上册《整式乘除与因式分解》第二节中的内容,前一节已学习了平方差公式,这一课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。先从代数式的几何意义出发,激发学生的'图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。

  同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。

  在今后的教学中应注意从以下几个方面改进:

  1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。

  2、必须强调学生时刻把握公式的特征及用途:

  特征:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是二项式中每一项的平方和,另一项是二项式中项的乘积的2倍或其相反式。

  用途:用于解决两个完全相同的二项式乘积运算、应在课堂上大力推行边启发、边探索、边归纳,突出以学生为主体的探索性学习原则、既讲“法”,又讲“理”:在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明、

  3、讲联系、讲对比、讲特征、学生在运用公式时出现的错误,其原因是把完全平方公式和旧知识及分配律弄混淆,要善于排除新旧知识间互相干扰的作用、规范板书。每节课的板书尽量坚持做到三保留:重要知识点保留,典型例题保留,学生易错点保留。

  《完全平方公式》的教学反思 8

  小班化教学的理论已经学习交流了很长一段时间,大家都在自己的工作实践中进行尝试,也取得了一些效果。通过本次上公开课,对小班化教学又有了一点新的认识,反思如下。

  从思想上注重学生的主动参与。本节课我讲的内容是完全平方公式,在课堂上完成完全平方公式的推导应用,完全平方公式的面积表示。如果单纯从教学内容上看,用传统的授课方式,很容易让学生记住公式会用公式。但是,如果注重学生的参与的话,在公式推导尤其是面积的表达上,放给学生自己,花费的时间很长。这样做虽然看起来教学效率偏低,但实际上在整个过程中,学生是全身心的投入进去了,自己是学习的主体,符合小班化教学的.思想。本节课的主动参与还体现在公式的运用上,让学生出错,让学生尝试,让学生从错误中反思,从而学会正确的应用。这是本节课里,比较符合小班化理念的做法。

  本节课里自认为不是很理想的一些做法。比如教态比较严肃,有时显得比较急躁。还有,学生的学习效果不是特别理想,学习的效率有待于进一步提高。

  《完全平方公式》的教学反思 9

  十二周周四上完新教师见面课《乘法公式——完全平方公式》,这次见面课从准备到实施的过程中,在教学方面学到了很多很多。首先非常感谢科组的各位老师,试讲后科组的老师们对我的设计指出不当的地方,提出了很多建议,而这些是我从来没有接触过和考虑过的教学有效性。

  上完课后心情很沉重,总感觉各个环节都不对劲。本节课的'教学目标是会推导完全平方公式,并能运用公式进行简单的运算。课后学生学习目标未完全达成,对运用公式进行简单运算存在一定的困难。通过认真反思,认识到自己在教学上存在以下问题:

  1.引入不当。学生刚接触完全平方公式,计算时容易漏掉公式等号右边三项式的中间项,已经很难一下子接受新知,而本节教学中又将完全平方和与完全平方差公式放到一起引入,增加了学生学习负担,从而使得学生在练习时对公式各项符号正负难以确定。

  2.本节课缺少自主探索合作交流。特别是在引入的时候,公式等号右边三项式应该放多点时间给学生观察,让学生用文字来概括公式的内容,描述完全平方公式的结构特征。而本节教学基本上采用灌输式教学模式,从引入到新知基本都是教师带着学生走,学生缺少探索机会。

  3.高估学生的接受能力,没有正确分析学情。这是自己开学至今一直没有做好的环节!学生已经会的知识花大篇幅讲,而对学生来说较陌生的知识,又一言带过或讲解速度过快。

  4.板书不够规范。例题与引入的板书接在一起,看起来杂乱无章。

  5.缺乏教学机智。课堂上,坐在后面的三个平时很调皮的学生举手示意我过去,跟我说老师我一点都不会,一点都听不明白。而自己只是很匆忙地让他们对照公式结构,课后再来问我讲知识点。这样的处理方式只会让这些调皮的学生觉得不受老师关注,从而更加不爱学习。到现在还是没想好这种情况的处理方式!

  6.课堂不够稳。巡查学生做练习时,发现两三个学生出现同样的错误就匆匆忙忙讲同类型例题。但对于本班学生,练习中断后讲题,事实上他们都还没进入状态,导致出现讲完类型题后学生还是不知道该题型的做法。

  7.学卷没能根据学生的学情设计,难度偏大,容量偏多,练习也未能体现坡度性。

  对于自己的不足,在以后的教学中要努力改正。具体做到:

  《完全平方公式》的教学反思 10

  单纯从内容来说,完全平方公式其实并不难掌握,但是问题在于学生如何理解并接受公式,因此本节课花了比较多的时间来理解掌握公式上,农田的例子的目的在于让学生能直观的理解完全平方公式,让学生有一个初步的数形结合的思想,此外利用多项式乘以多项式的方法验证完全平方公式是为了让学生巩固多项式之间的.乘法运算,从而体会公式的优越性。在体会了公式后,学生在练习当中出现的问题主要集中在2个方面:一个是符号的处理,(1/2-2y)的平方,中积的两倍前面不清楚是加还是减,尤其是(-x-y)的平方这个问题;第二个是有不少人漏掉了积的两倍这个项。

  为了让学生彻底弄清楚这个问题,在这两个方面的问题花了不少时间进行个别辅导。从整体上来看,学生对公式的来历还是基本上能理解,只是在实际的运用中比较容易犯常见问题,下节课需要加强这两个方面的训练。

  《完全平方公式》的教学反思 11

  本节课的重点有两个,一个是完全平方公式的运用,即对特殊数字的平方的计算,另一个是添括号用以计算三个项的完全平方以及灵活运用两个公式进行计算,因为有了平方差公式做基础,学生对于数字的平方有所感觉,知道将数字拆分,而问题出得比较多的是添括号的处理,也就是如何将三项合并成三项。尤其是在将部分项移入到带有负号的.括号的时候,经常忘记变号。所以在上课的时候对这个内容进行的专门的训练。

  通过训练,学生对变号的规则有了详尽的认识后,做起来比较轻松,但仍然有不少人犯错。于是我在想:添括号本来就是一个比较复杂的过程,既然复杂,干嘛不把复杂问题简单化?通过添括号完成后,直接利用结果分析得出:多项加减的完全平方则是将各项平方和再加上任意两项的积的两倍,这样学生得到结论更直接,更快速,学生的信心也更足。

  《完全平方公式》的教学反思 12

  这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的`运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容,而且非常不利于学生理解整式乘法和因式分解之间的互逆的关系。

  在新课引入的过程中,首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。可以说,对新问题的引入,是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。

  在这节课中就明显出现了这个问题,许多学生容易产生的问题都集中在一起让学生解决,反而将学生搞得不清不楚。所以,通过这节展示课也让我学到了很多,比如,化解难点时要考虑到学生的思维障碍,不可操之过急,否则适得其反。

  《完全平方公式》的教学反思 13

  完全平方公式是初中数学中的重要内容,是求解二次方程的重要工具。在教学中,我们可以通过多种方式帮助学生理解和掌握这个知识点。

  首先,可以通过引导学生观察实际生活中的平方形,比如矩形、正方形等,从而帮助学生理解平方的概念。接着,可以引导学生将这些形状进行变形,从而推导出平方公式。这样可以让学生在观察和探究中学习知识,提高他们的兴趣和参与度。

  其次,可以通过一些练习来巩固学生对完全平方公式的掌握。例如,让学生自己推导完全平方公式,或者通过例题进行练习。这样可以让学生在练习中加深对公式的.理解,提高他们的应用能力。

  最后,可以通过多种形式的讲解和练习,帮助学生深入理解完全平方公式的应用。例如,通过引导学生将公式应用到二次方程的解题中,从而加深他们对公式的认识和应用能力。

  总之,在教学完全平方公式时,需要注重学生的主动参与和思考,通过多种形式的教学,帮助学生深入理解和掌握这个知识点。

  《完全平方公式》的教学反思 14

  《完全平方公式》是高中数学中的一个重要内容,教学时需要注意以下几点:

  深入浅出,理论结合实际

  在教学过程中,要尽可能让学生理解公式的原理和应用,并结合实际例子,帮助学生更好地掌握公式的使用方法。

  多种教学方法,让学生全面掌握

  在教学中,可以采用多种教学方法,如举例、讲解、演示等,让学生通过不同的途径来掌握公式的使用方法。

  关注学生的学习效果

  教师应该及时关注学生的.学习效果,对于学习有困难的学生,可以适当增加辅导时间和帮助学生理解公式的方法。

  强化练习,加深学生印象

  在教学过程中,要注重学生的练习,通过不断的练习来加深学生对公式的印象和理解,提高学生的应用能力。

  反思教学,不断改进

  教师在教学完《完全平方公式》后,应该及时进行教学反思,总结教学中的优点和不足,并不断改进教学方法,提高教学效果。

  《完全平方公式》的教学反思 15

  作为一名数学教师,我在教授《完全平方公式》这一章节时,发现学生对于这一知识点的掌握情况并不理想。在课后的作业批改中,我也发现了许多学生对于该知识点的错误理解和运用不当。因此,我对于《完全平方公式》的教学反思如下:

  理论讲解不够深入。在教学中,我过于强调公式的表面含义和推导过程,而没有深入讲解公式的实际运用方法。因此,学生对于公式的`掌握并不深刻。

  学生缺乏实践操作。在教学中,我只是让学生简单地记忆公式,而没有进行足够的实践操作,例如让学生计算一些完全平方数。这导致学生在实际应用中出现了困难。

  教学方法不够灵活。在教学中,我只是采用了讲授和演示的方式,而没有根据学生的不同程度和理解能力进行差异化教学。因此,学生的学习效果参差不齐。

  为了提高学生对于《完全平方公式》的掌握程度,我决定采取以下措施:

  加深对公式的理解。在教学中,我将重点放在公式的推导和实际运用上,帮助学生理解公式的内在含义,从而更好地掌握公式的应用方法。

  提供实践机会。在教学中,我将为学生提供更多的实践机会,例如让学生计算一些完全平方数,以此帮助他们更好地掌握公式的运用方法。

  差异化教学。在教学中,我将根据学生的不同程度和理解能力进行差异化教学,例如让程度较好的学生自主探究公式的推导过程,程度较差的学生则采用更加直观的教学方法,帮助他们更好地理解公式。

  通过以上措施,我相信学生对于《完全平方公式》的掌握程度将会有所提高,同时也会激发学生的学习兴趣,提高他们的数学学习成绩。

【《完全平方公式》的教学反思】相关文章:

《完全平方和差公式》教学反思06-09

《完全平方和差公式》教学反思08-28

完全平方公式教案12-29

《完全平方和差公式》教学反思3篇03-30

数学《完全平方公式》教案(通用13篇)04-02

平方根教学反思03-23

诱导公式教学反思04-27

《乘法公式》教学反思04-02

倍角公式教学反思04-03