- 相关推荐
分数乘法一教学反思
身为一位到岗不久的教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的课堂经验,教学反思我们应该怎么写呢?以下是小编帮大家整理的分数乘法一教学反思,欢迎阅读,希望大家能够喜欢。
分数乘法一教学反思1
面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:
一、注重了情境的导入,提高孩子们的参与热情。
本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的`知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。
三、需要改进之处:
①对学生的多样思维应加大评价力度。比如:在开始情境导入这一环节中,学生除了出现4×(2+3) 4×2+4×3两种做法外,还出现了4×2×2+4这样的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。再比如:孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。
②课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
总之,通过本节课,使我在教育教学上,在落实新课改的精神上,有了很大的转变和提高,让教为学服务,提高教学质量,关键在课堂。
分数乘法一教学反思2
本单元是分数乘法,而《分数乘法(一)》只是其中最基本的知识点,本节课是分数乘以整数,也就是求一个的几分之几是多少?所以在课的开始,我先复习整数乘以整数的意义,为学生的`新知打下伏笔,在探究新知时,学生对3个1/5是多少理解起来就很简单了,计算的时候学生虽然不会,但懂得用加法来算,过渡到乘法,学生自然明白了结果,在适当的时候,我让学生观察乘法,得到什么样的规律时,学生说出:方法是分母不变,分子乘以整数做分子。
对于课本出现的总结“分母不变”。我觉得不够严谨。因为在计算过程中能约分的线约分,所以不能说分母不变。
在计算方法的教学中,沟通了加法和乘法的关系,学生从加法计算的角度尝试计算分数乘以整数。学生根据图形理解了为什么分数乘以整数的算理,明白3/5就是3个1/5,再乘以3就是9个1/5,也就是9/5.在次,追问;为什么分母不变呢,因为分数单位没有变,所以分母不变、为什么分子却发生了变化呢?那是因为,原来的分子3表示有3个分数单位,再乘以3,就有这样的9个分数单位,所以分子是3×3=9.这样更进一步的让学生理解了计算过程中,分子分母的计算。
遗憾的是:原以为这是一节很简单的课,但学生在看图写算式时,居然会把阴影部分写成整数。还有的学生居然把整数写成分母,说明课堂上老师的引导依然没有透彻。
分数乘法一教学反思3
在教学这部分内容的时候我更加深刻感受到“求一个数的几分之几“用乘法这部分内容需要补充的必要性。同时有以下想法。
画线段图现在就应该加强。
学生画线段图的技能相对较弱。在学生这部分内容的时候我加强了学生画线段图的练习。效果不错。同时为后面更加复杂的内容的学习打好基础。
加强对表示两者关系的分数的`理解。
虽然学生能够结合线段图理解分数的含义。我觉得还是不够的,应该让学生多说,说一说分数所表示的含义究竟是什么,也可以用手“比划“的方法。充分说一说是把谁平均分成多少份,谁相当于其中的多少份。让学生对于单位1有充分的认识。
继续巩固求一个数的几分之几用乘法。
让学生结合具体的问题多来说一说为什么用乘法。在理解题意的基础上说一说求谁,就是求谁的几分之几,用乘法计算。说的练习是一个内化的过程。我觉得是非常非常重要的环节。抓住练习题中有代表性的问题加强巩固。
分数乘法一教学反思4
本周学习了分数乘法,从分数乘整数到分数乘分数,从意义到计算,相对于前一个单元的内容来讲,应该是比较好理解的,但从作业情况来看,在分数乘法的计算中还是存在以下一些问题:
1、计算结果不能约分成最简分数。像9/15,16/24,3/72,35/56等这些比较常见的分数,部分学生竟然不知道该怎么约分,找不到分子和分母的公因数。另外一种情况是,在计算过程中,约分之后又与另一个分子或分母有公因数的,往往忘记约分或看不到约分。
对策:熟记乘法口诀,用乘法口诀去寻找分子和分母的公因数。例如35/56,就想5、7三十五,7、8五十六,这样就可以看出能用7去约分,可以提高做题的效率。
2、计算过程中,让分子和分子进行约分的。
例如:7×7/10=1/10,让7和7约分。
对策:赋予算式一定的情境或故事,比如我在讲的过程中这样说:在计算中这个分数线相当于战场上的分界线,分子和分母分别是交战的双方,你想,打仗时只能去和对方的敌人对打,而不能窝里斗,打自己人。,也就是分子只能和分母约分,而不能和分子约分。这样一讲,很多学生听的饶有兴趣,而且浅显易懂,出现这种错误的几率大大降低了。
3、计算中,约分后不与原来的分子、分母再相乘的。
例如:
对策:继续讲故事,你和战友一起出去打仗了,遇到了敌人,要派一人出战(约分),战斗完毕,每个人都要有团队意识,结伴而行,几个人出去的,还要几个人一起回来。即:分子和分母都还要由两个数相乘得到。
4、其他由于不细心、书写不规范出错的.。
例如有些在约分中把约分的结果写在原数的旁边,然后计算的结果又与过程写得很挤,造成计算结果混淆,看不清楚而出错。这就需要在平时的教学中对学生做题过程严格要求,规范书写,使学生养成认真、细心的好习惯。
分数乘法一教学反思5
今天的教学内容是分数乘分数,重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
在教学实践中我继续采用数形结合的数学方法,帮助学生达成以上的两个数学目标。对于今天的探究活动没有直接放手,这是因为学生对求一个数的几分之几是多少的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化求一个数的几分之几是多少的分数乘法意义,感知分数乘分数的计算过程。
二、以3/41/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过以形论数和以数表形的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的做一做,进一步达成以上目标,并为总结分数乘分数的计算积累知识。可以说整体教学的效果还好。
通过今天的课我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材中,数形结合思想的渗透也有着不同的'层次,例如上学期的分数乘法(一)和分数乘法(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲以形论数和以数表形两个方面有机的结合起来,只有完整的是学生经历数与形之间的互动,才能使他们感知数形结合,才能使他们能在解决问题时自觉地应用数形结合的方法。
分数乘法一教学反思6
本节课教学的就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。
教学本课后我的感受是:
1、让学生回忆一下一个数乘分数的意义。对分数的意义进一步加深。
2、求一个数的几分之几是多少的文字题,这为学习相应的分数应用题做准备
3、在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。特别是多向同年级的`老师学习,提高自己的教学水平
4、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的上面。为以后应用题教学作好辅垫。
5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
分数乘法一教学反思7
教学了《分数乘法(一)》。我将本课的教学目标定位为理解分数乘法的意义及算理、算法。与本课相联系的学生的`学习起点是整数、小数乘法的意义,算理与算法。分数加减法的算理算法。我在复习铺垫环节,抓住了“分数”、“乘法”两个关键字。在备课时,可以从两个角度进行思考:第一,分数乘法的算理、算法基础是分数加减法;第二,因为是乘法所以又涉及到乘法的意义。因此在教学时,我对分数的加减法进行了深入复习,对乘法的意义也进行了强调。由此,再迁移出分数乘法,学生觉得很轻松。
另外,许多同学在预习时已经会算,即已经通过自学知道算法是什么,但这仅是限于机械地记忆,没有理解其背后的本质。因此,在教学过程中,我认为教师可以结合画图,帮助学生数形结合去理解乘法的意义和算法。算理和算法在本课中,我认为已经浑然一体,不需分割。在解释算理的过程中,学生即总结出了算法。
【分数乘法一教学反思】相关文章:
分数乘法教学反思12-26
《分数乘法》教学反思10-04
《分数乘法》教学反思04-04
分数乘法3教学反思12-01
分数乘法教学反思范文10-09
分数乘法教学反思优秀02-14
分数乘法3教学反思模板11-22
分数乘法教学反思(精选23篇)03-30
数学分数乘法教学反思04-08