数学概念教学心得体会

时间:2024-05-16 07:51:03 教学心得 我要投稿

数学概念教学心得体会

  我们从一些事情上得到感悟后,就很有必要写一篇心得体会,这样能够培养人思考的习惯。但是心得体会有什么要求呢?下面是小编收集整理的数学概念教学心得体会,欢迎阅读,希望大家能够喜欢。

数学概念教学心得体会

数学概念教学心得体会1

  我初步构思了小学数学新授概念课教学的基本模式,其结构为:创设情境,引入新课一自主探索,合作交流一巩固深化,拓展应用一总结回顾,评价反思。此模式简单易操作,就是先让学生自己学一学,在小组内交流交流,再把学习情况展示展示,然后教师针对出现的问题指导指导,最后练习巩固巩固。

  (一)创设情境,引入新课

  合理有效地创设生活教学情境,可以使数学课堂教学更接近现实生活,使学生身临其境,加强感知,突出重点,突破难点,激发思维,轻松地接受新知识。主要是引趣、激疑和诱思。学习兴趣是学生基于自己的学习需要而表现出来的一种认识倾向,是社会和教育对学生的客观要求在学生头脑中的反映。

  1.情境创设要以真实性为基本前提。

  所创设的情境应符合客观现实,不能为教学的需要而‘假造”情境。数学情境、现实情境二者应不相修。例如,在教学‘分数的意义”时,可以创设我们班有学生过生日,分发生日蛋糕时,老师应该怎样分?在真实的情景中,学生能感受到数学就在身边,生活需要数学,学生学习起来津津有味。

  2.“数学味”是情境创设的本质保证。

  在情境创设的过程中要紧扣所要教学的数学知识或技能,创设有“数

  学味”的情景,激发学生的求知欲和主动参与学习的动机,使学生的学习情绪达到最佳境界,更好的掌握所学知识。例如,在教学‘统计”时,创设这样的教学情景:“六一”儿童节到了,203班要举行联欢会,会上要准备一些水果,选派小红和明明去水果市场购买,购买回来后,又该怎样分?从而引入新课一统计。

  3.要以“发展性”作为情境创设的价值导向。

  情境的创设,必须选择恰当的、适合学生发展的情境方式,使情境创设反映儿童熟悉和可以理解的事物,例如,在教学“单位1”时,创设了同学们借书的情景,然后让学生根据借书的情景提出一个数学问题。这样设计,学生容易产生亲切感,激发了学习兴趣,从而积极地投入到新知的探究中。

  遵循五个原则:准确性原则;激发性原则;迁移性原则;简捷性原则;系统性原则。

  这一环节要干净利落,不能拖泥带水,时间控制在5分钟以内。

  (二)自主探索,合作交流

  此环节是课堂教学的核心部分,是培养学生学习能力和习惯,发展学生个性,激发学习兴趣的有效空间。可分以下几步进行。

  1、自主探索,小组讨论

  针对上一环节创设的问题情景,学生进行自主探索活动,形成自己的解决问题的基本思路。现代著名教育学家布鲁纳强调:“教一个人某门学科,不是要把一些结果记下来,而是教他参与把知识建立起来的过程。”所以在教学中,教师应引导学生主动参与教学活动,鼓励学生自主探索,让学生成为知识的探索者和发现者。

  (1)注重过程教学,引导学生主动发现。

  学生是学习的主体,教学要依据学生的学习规律,创设条件,促进学生学习的顺利进行。因此,我们可引导学生利用己有的知识自己去发现新问题,探求新知识。例如,在教学组合分数意义时,可以引导学生利用图形之间的联系,通过大量的实践操作,在操作中领悟分数意义的形成过程,从而获取知识,掌握学法。

  (2)提供参与机会,引导学生积极思维。

  在教学过程中,教师应注意给学生参与活动提供各种机会,使学生在参与过程中掌握方法。学生的学习过程就是一个发现问题、分析问题、解决问题的过程,在这个过程中学生遇到各种疑问,同时学生的智慧、个性、创新得到展示,学生从探索新知的过程中获取新知识。

  ①提供说话的机会。例如,在教学组合图形的面积计算中,让学生说一说目己拼的组合图形是由哪些图形组成的,让学生相互交流小组内计算组合图形面积的方法。学生在说的过程中充分暴露思维过程,养成良好的思维习惯,提高分析问题、解决问题的能力。

  ②提供操作的机会。在教学中应经常让学生拼一拼、剪一剪、画一画、摆一投。折一折。例如,在教学组合图形的面积时,让学生利用手中的组合图形剪一剪,或者画一画,从而找到组合图形面积的计算方法:在教学分数的认识时,可以让学生通过折一折认识分数的意义。学生通过动手操作,发现规律,掌握新知。提供独立思考的机会。教师在教学中应注意精心设计提问,启发学生思维,充分给予学主独立思考的机会。例如,在教学推导圆柱体积计算公式时,先让学生回忆国的面积计算公式的推导过程,然后设问:你们认为圆柱体体积与什么条件有关?你们会用什么办法来推导圆柱体的体积计算公式?会利用什么知识来解决这个问题呢?然后让学生小组合作交流,动手操作,推导圆柱的体积计算公式。

  ③提供合作探究的机会。合作探究有利于形成开放、平等、融洽的气氛,有利于充分发挥学生学习的主动性和积极性。这就要求课堂教学问题的设置要具有启发性,问题的呈现要有利于展开实验、操作、交流等活动。合作探究坚持不搞一言堂,不搞教师奉送答案。代之以小组讨论等方式,主动探索,把静态的知识结论转化为动态的探索过程。提供质疑问难的机会。爱因斯坦曾经说过:“提出一个问题,往往比解决一个问题更重要”因此,可引导学生在课堂上针对教学内容提出问题,由教师或让学生解答,或自己解答。实践证明,这种方法较能活跃课堂气氛,让学生主动参与,调动其积极性,真正体现学生的`主体地位。

  (3)指导学习方法,引导学生学会学习。

  ①个体自学:个体自学就是尊重学生的需要,让学生自己去发现问题、探究问题、解决问题。自学时,学生可以按照自己的基础、习惯、水平、方式、速度等去圈圈点点、画画写写、想想做做、思思说说,对自己已懂的内容进行整理、归纳,同时将不太理解的内容抅画出来,以求协商解答。

  ②小组学习:在自学的基础上,充分发挥小组成员的互助作用,学生提出个体不能解决的疑难问题,在小组内展开讨论,其他学生阐述个人见解,尽量在组内探讨解决。

  ③全班学习:在个体自学及小组学习的基础上,充分发挥学生的主体带动作用,进行全班交流,展示学习成果,自主评价,达成共识,使每一个合作成员都能在自主学习的基础上共同达到学习目标。

  遵循五个原则:自主性原则;独立性原则;主动性原则;合作性原则;创造性原则。

  2、全班交流,形成共识

  学生小组讨论的结果,探讨问题的效果如何,需要进行必要的交流。在这里,教师的作用相当于节目主持人,让各小组尽情发表观点,争辩,质询,接受,吸收。在这个过程中,热烈的气氛会调动学生学习的积极性,集体的力量可以促使学生勇敢的阐述观点。学生的辨析,推理能力以及表达能力在这个过程中得到训练和提高。当学生的交流取得一定进展时,教师应该及时加以肯定和表扬,不断引导学生理解领会知识,掌握方法和技能。教师可以根据学生活动的情况,针对交流中存在的问题,作必要的小结性讲解,对学生的研究情况,交流情况,以及问题解决的方法,给予客观评价,使学生进一步明确解决此类问题的策略,感受解决问题的愉快。遵循五个原则:启发性原则;冲突性原则;思考性原则;生成性原则,创新性原则。

  此环节以15分钟左右为好。

  (三)巩固深化,拓展应用

  马芯兰说:“没有练习就没有能力。”设计具有代表性、层次性、思考性强、应用价值大的习题。强化练习的应用价值,提升习题的教育功能。

  练习设计要注意三点:严格控制练习时间,布置限时练习,确保当堂完成。

  1、练习量要少而精,分层布置,因人而异,不要在量上吓倒学生,让优等生有发挥的余地,学困生也有成功的可能;

  2、练习形式多样而有趣。有操作的、有思考的、有书面的。

  3、练习向课外延伸,设计富有个性化的或小组协作完成的长作业(几周或几个月完成)。让练习不再是学生的一种负担,让学生在做练习中体验学习的乐趣。

  遵循五个原则:体验性原则;激励性原则;开放性原则;实效性原则;发展性原则。

  本环节15分钟左右,根据第二环节的时间适当调整。

  (四)总结回顾,评价反思

  作为一节课的终结部分,可以先让学生说一说这节课学到了哪些知识,有哪些收获,对自己进行一下评价,然后教师对学生参与学习的精神状态进行肯定,对学生进行积极评价,使学生产生获取知识的喜悦,充满后继学习的信心。例如:在教学“三角形内角和”时,可以这样结课:

  师:任何三角形的内角和都是多少度?任何四边形的内角和是多少度呢?你能不能推算出五边形、六边形的内角和是多少度呢?

  请同学们试一试,看谁能从中发现有趣的规律!

  如此结课,既总结了本课的教学内容,又造成了悬念,把课堂延伸到课外,激发了学生强烈的求知欲望,有益于激励学生在今后的学习中不断地探索、发现、创新。

  遵循五个原则:目标性原则;针对性原则;引导性原则;简练性原则情趣性原则。

  一般控制在3分钟以内。

  六、操作评价

  我们提出的“合作探究,互动生成”新授课教学模式,是以“创境激趣”为关键,以“解决问题”为核心,以“自主探索”为主线展开的多维合作活动。蕴含着以人的发展为宗旨的教学观,以民主为基础的师生观,以自主为手段的方法观,以提高素质为本的质量观的模式特征。实践证明,该模式实现了由单一化向多样化教学方式的转变,较好地创设了让学生参与到自主学习中来的情境与氛围,动手实践、自主探索与合作交流成为学生学习的主要方式,形成了学生自主探索、自主解决问题的态势,有利于发展学生的创新精神,是提高教学质量的有效途径。

  21世纪呼唤高质量的基础教育,需要千百万的优秀教师,如果观念不更新,因循守旧,数学教学就谈不上改革与发展。我们应清醒地认识到,数学教学要改革,必须首先更新教学观念。如果观念不更新,数学教学改革必将流于形式,事倍功半甚至劳而无功。新观念的树立,来自于不断地学习认识的过程。自主探究教育观念深入师心,加快了数学课堂教学素质化进程。教师转变了教学观念,变“灌输式”、“一问一答式”为“启发式”。能在引导上下功夫,重视了基本功训练和自学探究能力的培养。

数学概念教学心得体会2

  小学数学概念虽然是数学概念的一部分,但与纯粹的数学概念并不完全相同,它以建构一级概念为主,除了具有数学概念的特征外,还往往具有某些自然的、原生态的概念痕迹,常常以实例或以描述的方式予以呈现,如自然数、计数单位、加法、分数、圆等,所以我们小学数学概念的教学应重视其发生、发展过程。

  现从数学概念学习过程的时序推进角度观查,结合小学数学概念教学的实践与思考,对小学数学概念教学过程提出一种线性渐进的模式:有效操作-建立表象-抽象定义-再现运用-概念体系。这个过程对于学生来说是一个复杂的思维过程,它既是一个知识的再创造、概念的逐步理解过程,又是一个改善学生思维品质,发展学生思维能力,培养学生数感品质的过程。

  一实施有效操作,感知概念还原

  数学操作的过程实际上也可看成是概念的还原过程,将概念还原到它的最初状态、本质状态,让学生亲历发现并彻底感知概念内涵和外延。因此,在数学概念教学中,必须精心设计促进学生自觉进行操作的教学情境,让学生通过各种有效活动,达到内外合一,最终获得概念的内化。

  例如,“角的大小”这一概念的教学,课前让学生准备不同边长的硬纸条做成的可以活动的角,组织教学,具体过程如下:通过操作初步感知角有大小:请大家展示一个直角,再展示一个比直角小的角,再展示一个比直角大的角。通过操作感知角的大小本质特征:四人小组大家展示一个同样大小的角。再分别展示一个角,要求边短的展示的角反而大,行吗?通过刚才操作活动,你们发现了什么?小组交流得出结论。生:角的两条边叉开得越大,角就越大。生:角大小与边的长短无关。进一步内化概念:根据角的定义你能解释为什么角的大小与边的长短无关吗?生:角的两边是两条射线,可以无限延长的。

  数学操作在概念学习中不存在单独的外部操作或单独的内部操作,在实际教学中,我们要杜绝各种脱离学生内部操作的虚假操作现象:学生表面上动口,动手,热热闹闹参与活动,实质上这些外部操作根本没有为新的内化作准备。

  二正确加工提取,建立概念表象建立正确清晰的表象是由形象思维向抽象思维转化的桥梁,根据小学生的思维特征,在概念教学中,必须遵循从具体到抽象的原则,利用学生的生活经验,进行观察比较-感知辨认-加工提取-建立表象。

  例如教学“平行线”这个概念时,先让学生感知实物,如英语练习本上的横线,双杠的两根直杆等,然后剔除非本质特征:两条线的长短、位置、距离等,分析本质特征,建立清晰表象:两条直线无限延长永不相交,在同一平面内(可以用双杠的一条直杆和与他不相交的一条横杆来说明这两条杆所在的直线永不相交,但不是平行线,关键在于它们所处的是两个不同的平面)。

  三抽象升华定义,实现概念提炼

  概念定义是概念从具体到抽象的升华与凝聚,是概念习得的高级阶段,但不是最终阶段。如果教师在概念教学中忽视操作与表象,仓促进入定义,学生只能得到形式的定义语言叙述而已。同样只进行操作与表象的建立,而不适时的.进行抽象升华,进入概念定义阶段,也难以真正理解数学概念。

  在小学数学概念教学过程中运用操作、表象、定义,可以随着学生知识和经验的发展,在一定教学阶段形成一定认识,逐步充实,千万不能用凝固的观点,把一些数学概念教死。例如,把两个数的差说成大数减小数,这就把概念讲死了,因为两个数的差还可以是相同的数相减的结果,或小数减大数所得的结果。还有小学数学概念多数是通过语言描述的,教学时教师的数学语言也要力求准确简洁,比如“个位加个位,十位加十位”这样讲就不准确,应该说“个位上的数与个位上的数相加,十位上的数与十位上的数相加”,“15dm不读作15厘米而读作15dm(dm用英文读)”。

  四不断再现运用,理解概念本质

  不断再现、不断运用概念的价值不仅仅为了巩固概念,最为重要的是理解概念,通过对概念本质属性和规律的辨别选择,通过与更多概念联系、比较分辨,才能激活概念各种抽象属性,让学生真正获得信息。

  在教学中教师要精心设计概念再现与运用的具体情境,使学生扎实、透彻理解概念本质。如“垂线”概念教学时,学生很容易出现从上往下垂的非本质特征,概念教学中可以设计让学生从斜线上方一点,斜线下方一点,斜线左边一点,斜线右边一点,分别向斜线作垂线,学生动脑筋画了以后,就能全方位的认识垂线,在后续的学习中,教师还可以适时的让学生作两条平行线之间的垂线,作锐角三角形三个顶点到对边的垂线,让学生对所学概念不断再现、运用,得到了拓展、理解。

  五沟通激活联系,形成概念体系

  没有孤立的数学概念,数学概念总是处于某一联系的知识网络中,在某一数学概念得到运用时,总是从相连的概念出发,进行沟通、激活,从而形成不同的动态的概念体系。例如,四边形、正方形、长方形、平行四边形和梯形等概念可通过下图整理。

  在小学数学概念教学中实施“有效操作-建立表象-抽象定义-再现运用-概念体系”这一概念教学过程模式,应该有机融合,万不可简单割裂,相信必定有它的可行性。

数学概念教学心得体会3

  一、“问题研学,多元联动”的内涵

  “问题研学”:体现了以问题为主线的教学思想教师备课要以问题设计为重点:如何将知识点化作有效的问题来研究,如何将能力训练具化成科学合理层递式、阶梯状的问题来探讨,如何将旧知与新知凝合为系统的问题来拓展,如何设置情境提出并解决问题,都需要教师深入研究、整合,钻研教材、整合教材、活用教材。

  学生学习要以解决问题为目的:围绕各种问题,学生动脑思考,自主、合作、探究,在陈述自己观点、倾听同伴思维、小组异议争论中,不断整合、完善,求同存异,在发现、分析、解决问题的过程中,最终培养起学生的思维能力。“多元联动”:体现了教学过程多元化的特色它是与以往的单一教学相对而言。教育理念多元化、课程整合多元化、教学组织形式多元化、作业设计多元化、评价手段多元化等,在问题研讨中、评价激励中、团队平台中,师生、生生充分互动,促进学生学习力、习惯养成、心理发展、素质培养的连贯发展。

  二、“问题研学,多元联动”数学课堂教学模式的操作流程

  1.创设情境,提供素材

  概念教学是较为枯燥、抽象的,而小学生的心理特征决定他们很容易理解和接受直观、具体的感性材料。在教学时要创设贴近学生生活实际的情境,提供丰富的素材,调动起学生自主探索解决问题的热情地,为学生理解、总结概念奠定基础。

  设计这一环节的意义在于,激发学习兴趣,把学生引入一个与问题有关的情境中,让学生喜欢学、有兴致学,调动其学习的积极性。

  2.分析素材,理解概念

  概念的获得是学生经过分析、综合、比较、抽象、概括的结果。当学生产生探究欲望和具备了一定的思考基础之后,教师要努力给学生创造学习数学的生动场景,让学生经历独立观察思考、小组互动、合作交流的过程,通过对素材的分析,形成对概念的初步理解。

  此环节要求教师要为学生提供自主探索、合作交流的时间和空间,处理好自主学习的主动性、合作探究的互动性及探究学习的过程性,要让学生经历“独立思考——组内交流——大班汇报”的过程,让学生在观察、实验、猜测、验证等数学活动中,交流并明确解决问题的.策略。

  设计这一环节的意义在于,让学生带着明确的问题任务,在独立自学中,在合作探究中,独学与群学相结合,实现研学的目的。引导学生进行合作探究,在小组群学中,让学生学会合作、学会探究、学会倾听、学会争论、学会求大同存小异,不断提升学习能力,形成学习素养。

  3.借助素材,总结概念

  概念的形成不是一次完成的,要经过多层次的比较、分析与综合,才能真正发展学生的思维结构,让学生真正理解概念。作为具有在丰富个性的能动主体,小学生会对新概念产生不同的理解和建构,课堂重难点问题在小组“合作研讨”、充分探究的基础上,全班交流,组组互动、生生互补、师生切磋,多元联动,最终为学生释疑解惑。教师要引导学生发现知识规律,构建知识体系,总结概念。

  设计这一环节的意义在于,在小组、班级群学中,师生、生生互动中,理论与实践碰撞中,让学生学会合作、学会探究、学会倾听、学会争论、学会求大同存小异、学会学用结合,不断提升学习能力,形成学习素养。

  4.巩固拓展,应用概念

  学习数学概念的重要目的是运用这些概念解决实际。老师在设计应用概念的问题时,要注重创设情境,在丰富的素材中让学生体验到数学与生活的密切联系,进一步激发学生的学习兴趣,同时让概念教学的每个环节都体现出相对完整及其密切联系,以利于学生体验概念学习的科学研究过程。

  设计这一环节的意义在于,及时反馈信息,实现“步步清”“堂堂清”。通过完成课堂练习,检测学生是否当堂达到学习目标。让学生像考试那样紧张认真的独立完成作业,养成独立分析问题,解决问题的能力,进而训练正确的思维习惯,培养创新思维。

  5.梳理归纳,达标测试

  引导学生对这节课的简单回顾,一般要围绕学习目标进行梳理,让学生明白一节课学到了哪些知识,掌握了怎样的学习方法,总结本节课所得。课堂教学接近尾声,一定要先让学生用简明的语言进行当堂小结,让学生主动梳理知识、总结学法与规律,实现问题的回归与最终解决。

  设计这一环节的意义在于引导学生感悟归纳,总结提升,学会学习,做到“堂堂清”,同时针对出现的问题,及时矫正和效果反馈,必要时增加补偿练习。

  三、适应范围

  青岛版小学数学概念课教学

  四、实验效果说明

  “问题研学,多元联动”的课堂教学模式实施已近1年。在新理念、新方法纷至沓来的当下,因为该模式一直把“问题探究、多元参与”作为主线,并不断地发展、完善,所以成为我校小学概念课的重要模式。

  在该模式理念的指导下,我们引导学生主动发现问题,自主、合作、探究的学习方式在课堂上充分体现。学生在学习共同体建构下进行的学习,个人数学思维得到开启与发展,集体的智慧得到碰撞与共享。教师适时的点拨引导,创设了轻松的课堂氛围,学生身心得到最大限度的放松,因此,学习能力不断提升,数学素养逐渐形成。

数学概念教学心得体会4

  本学期,我担任六年级数学教学工作.在一学期的实际教学中,我按照课程标准的要求,结合本校的实际条件和学生的实际情况,全面实施素质教育,努力提高自身的业务水平和教学能力.为了克服不足,总结经验,使今后的工作更上一层楼,现对本学期教学工作作出如下总结:

  一、学生基本情况:

  六年级我教学六(2)数学,一个班50人,这个班是我从五年级带上来的,只有少部分人的学习习惯比较好,学习比较用心,但大部分人由于基础太差而无法接受新知识,学习习惯问题方面也有所欠缺,比如,拖欠作业,做作业过程中偷工减料,数学计算的过程的书写格式不正确等。

  二、成绩分析:

  六年级学生面临即将毕业,因此,对学习成绩的要求会更高。在数学成绩方面,六(2)班的数学成绩不尽人意,通过前面的总结使我认识到:教师要严格的要求学生遵守纪律,从而创造良好的学习环境,使教和学能顺利进行,特别是对小学生来讲老师的严格要求就更重要了,教师只有通过加强教育,耐心的辅导,加上在教学中不断探索,总结经验,全部精力投入到教学中。

  三、工作总结:

  对于本人来说是已是第二次接任毕业班的课,由于班级学生数学成绩较差,感觉学生的高分出不来,低分比较多,所以我有迷茫过,但很快调整过来了,现总结如下:

  1、认真备课.

  备课时,我结合教材的内容和学生的实际精心设计每一堂课的教学过程,不但要考虑知识的相互联系,而且拟定采用的教学方法,以及各教学环节的自然衔接;既要突出本节课的难点,又要突破本节课的重点.认真写好教案和教后感.特别是六年级的很多内容都比较容易混淆,如分数的解决问题和百分数的解决问题等,所以课前必须做好充分的准备,才能收到良好的课堂效果。

  2、认真上课.

  为了提高教学质量,体现新的育人理念,把"知识与技能,过程与方法,情感态度与价值观"的教学目标真正实施在实际的课堂教学之中.课堂教学以人为本,注重精讲多练,特别注意调动学生的积极性,强化他们探究合作意识.对于每一节课新知的学习,我通过联系现实生活,让学生们在生活中感知数学,学习数学,运用数学;通过小组交流活动,让学生在探究合作中动手操作,掌握方法,体验成功等.鼓励学习大胆质疑,注重每一个层次的学生学习需求和学习能力.从而,把课堂还给了学生,使学生成了学习的主人.如六年级的.《圆的周长》我让学生充分在课堂中利用小组的力量去想办法解决,虽然时间用的比较多,但学生兴趣很高,课堂收益良好。

  3、认真批改作业.

  对于学生作业的布置,我本着"因人而异,适中适量"的原则进行合理安排,既要使作业有基础性,针对性,综合性,又要考虑学生的不同实际,突出层次性,坚决不做毫无意义的作业.学生的每次作业批改及时.个别错题,当面讲解,出错率在50%以上的,我认真作出分析,并进行集体讲评.另外,针对六年级即将毕业的事实,我从基础的练习开始抓起,每天都布置一些基础练习和学生容易混淆的题目,如简便计算和解方程,另外还有分数与百分数的解决问题等。

  4.不足之处.

  没有认真做好后进行转化工作.上课和批改作业就占用了大部分时间,因此在辅导学生这一方面做的不够。只是一方面的鼓励学生遇到问题一定要及时找老师解决,但毕竟很多学生的玩性比较大,主动性不强,导致没有人自发找老师辅导的局面。另一方面,在发现不好的作业或是出现的问题,只是针对整体强调,忽略了个体的能力和力量。

  总之,一学期的教学工作,既有成功的喜悦,也有失败的困惑.本人今后将在教学工作中,汲取别人的长处,弥补自己的不足,力争取得更好的成绩.

数学概念教学心得体会5

  概念分为一般概念和核心概念,核心概念是客观事物的本质属性在人们头脑中的反映,核心概念教学的过程是认识从感性上升到理性的过程。小学生年龄小,生活经验不足,知识面窄,构成了核心概念教学中的障碍。而数学核心概念又是小学数学基础知识的一项重要内容,是学生理解、掌握数学知识的首要条件,也是进行计算和解题的前提。因此,重视核心数学概念教学,对于提高教学质量有着举足轻重的作用。那又如何搞好小学数学核心概念教学呢?下面我粗浅地谈谈自己的一些看法:核心概念教学一般都分四个阶段:引入、形成、巩固、发展。

  一、核心概念的引入

  1、核心概念的引入是核心概念教学的第一步。教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,把“纯粹”的数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学核心一般概念和核心概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如,“分数的初步认识”的教学,主要要说明“谁”的几分之几,为了说明这一点,可出示不同形状和大小的图形,折出它们的二分之一,让学生明白虽然都是二分之一,却表示不同的大小,所以一定要说明“谁”的二分之一。

  2、同时,在核心概念的引入中要格外做到旧知识的迁移。

  任何一个数学核心概念都是在以往核心概念的基础上演变发展而来的,前一个核心概念是后一个核心概念的基础和推理依据,旧核心概念铺垫不好,就会影响新核心概念的建立,如,在“整除”概念基础上建立了“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。在几何知识中,由长方形的面积导出正方形、平行四边形、三角形、梯形等的面积公式。

  3、最后还可以从计算引入新概念。有些概念不便于用具体事例来说明,而通过计算才能揭示数与形的本质属性。如,教学“互为倒数”这个核心概念时,可先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这样的乘积是1的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。

  二、概念的形成形成核心概念的教学是整个核心概念教学过程中至关重要的一步。概念的形成是通过对具体事物的感知、辨别而抽象、概括出核心概念的过程,因此学生形成概念的关键就是发现事物或形的本质属性或规律。

  1、概念语言的本质属性

  一个数学概念建立后,需要对其本质进行剖析,也就是说要对该核心概念的本质属性再一一从定义中分离出来加以说明,把握共知要素。对概念中的关键词语要着重讲解,对概念的名称、符号要交代清楚,也就是说要对概念描述的语言做到准确把握。如,什么叫循环小数?课本是这样定义的:“一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的数叫循环小数。”这里要抓住两点,一是前提是一个数的小数部分,与整数部分没关系,二是属性是一个数字或几个数字重复出现,且是依次不断的。明确了这两点就能迅速的判断出某些数字是不是循环小数,如7777.77

  7、7.321

  32、2。2020020002这样的小数都不具备循环小数的本质属性,所以都不是循环小数。而0.324324、0.146262具备了循环小数的本质属性,它们都是循环小数。

  2。注意比较有联系的概念的异同。

  数学中的一些概念是相互联系的,既有相同点,又有不同之处。划清了异同界线,才能建立明确的核心概念。而对这类概念,应用对比的方法找出它们之间的联系、区别。使学生更加准确地理解和牢固记忆学过的核心概念。如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。

  3、运用变式,突出核心核心概念的本质属性。

  概念是客观事物本质属性的概括。学生理解概念的过程即是对核心概念所反映的本质属性的把握过程,在教学过程中,通过变式的运用,可以使要领的本质属性更加突出,达到化难为易的`效果。例如,在三角形核心概念教学中,通过不同形态(锐角三角形、直角三角形和钝角三角形)不同面积,不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些属于三角形的非本质属性,从而准确地理解三角形的概念。在直角三角形概念的教学中,让学生接触不同位置不同形态的一些直角三角形如平放,斜放,从而使生理解只要有一个角是直角三角形,就是直角三角形即直角三角形的概念。

  三、概念的巩固

  概念的形成是一个由个别到一般的过程,而核心概念的运用则是一个由一般到个别的过程,它们是学生掌握核心概念的两个阶段。通过运用核心概念解决实际问题,可以加深、丰富和巩固学生对数学核心概念的掌握,并且在核心概念运用过程中也有利于培养学生思维的深刻性、灵活性、敏捷性、批判性和独创性等等,同时也有利于培养学生的实践能力。教学中主要是通过练习来达到巩固概念的目的的。练习是使学生掌握基础知识和技能,培养和发展学生思维能力的重要手段。但在练习时必须明确每项练习的目的,使每项练习都突出重点,充分体现练习的意图,做到有的放矢,使练习真正有助于学生理解新学核心概念,有利于发展学生的思维。如为了帮助学生巩固新学核心概念和形成基本技能,可以设计针对性练习;为了帮助学生克服定式的干扰,进一步明确概念的内涵和外延,可以设计变式练习;为了帮助学生分清容易混淆的核心概念,可以设计对比练习;为了帮助学生扩展知识的应用范围,加深学生对新学核心概念的理解,培养学生的创造性思维,可以设计开放性练习;为了帮助学生沟通新学核心概念与其他知识的横向、纵向联系,促进核心概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。但千万要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“加法和减法的关系”后,可以安排以下三个层次的练习:

  a。看谁填得又对又快!

  237+69=306

  502-387=115306-□=237

  387+□=502□-237=69

  □-115=387

  这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。

  b。填空.说一说你是怎样想的.

  这一层是发展练习,它是在学生已基本掌握了核心概念和初步形成一定的技能之后的练习,它可以帮助学生形成熟练的技能技巧。

  c。求未知数x。

  x+265=930

  465+x=710

  225=198+x

  101=x+37

  这一层是综合练习,它可以使学生进一步深化核心概念,提高解题的灵活性,培养学生的数学思维能力,实现由技能到能力的转化。

  四、概念的发展。

  这是不可缺少的一个环节。因为,一方面概念之间有着纵横交错的内在联系。如:除法、分数、比之间的内在联系,在学完“比”后为学生揭示清楚,有助于学生理解新概念,复习旧知识。另一方面,教学概念,既要重视核心概念的阶段性,又要注意到概念发展的连续性,不要在一个知识段中把核心概念讲“死”,以免影响概念的发展和提高,也不要过早地抽象而超越学生的认识能力。要有计划地发展概念的含义,按阶段发展学生的抽象概括能力,要使前一阶段的教学为后一阶段的核心概念发展做好孕伏。如“除法的意义”,二年级只能让学生认识为:平均分和一个数里面包含着多少个另一个数,只有到了四年级才能让学生抽象出“除法意义”的确切含义。

  总之,概念教学的各阶段不能截然分开。引入后要紧接着形成,形成后要及时巩固,巩固中要加深理解,同时又要为概念的发展作准备。教师在教学中,要结合概念的特点和学生的实际,灵活掌握使用。优化数学核心概念教学,培养学生的创新思维。

数学概念教学心得体会6

  一、精心导入,感知概念

  新颖恰当的导入方法,能激发学生的学习兴趣,使他们自主参与学习,达到提高课堂教学质量,培养创新人才的目的。利用多媒体把文字、图形、动画、视频和声音等多种信息呈现给学生,变枯燥为丰富多彩,激发学生的学习数学概念的兴趣,为学生提供一个生动直观、形象具体的概念学习环境。如教学“平均数”时,教师运用多媒体课件播放了1分钟投篮比赛的情境。问学生三次投篮,用哪一个数表示1分钟投篮的水平最合理。如果三次投篮成绩都是四个,学生很快说出用“4”来表示。继续播放三次投篮的情境,引起学生兴趣,激发他们的好奇心及参与的渴望。如果三次投篮的成绩分别是3个、4个、5个呢?进而引发学生认知上的冲突产生,给他们足够的时间去思考、讨论、探究,然后小组回答,并且相互补充。学生能想到运用移多补少,先合并再平分等方法得到投篮水平用“4”来表示。教师顺势导入新课,像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到一个相同的数,就是这几个数的平均数。现在,我们就来认识一下“平均数”这个新朋友。这样运用多媒体从现实生活中导入,自然引出平均数概念,学生易于理解,对新知识的学习兴趣盎然,提高了学生自主学习的动力。

  二、联系生活,建立概念

  多媒体能够集声音、图画、动漫等为一体,让小学数学课堂教学变得更为丰富生动,以调动学生的学习感官思维。课堂上运用多媒体网络技术手段,可更好地解决知识重难点。能够培养学生学习的兴趣,变苦学为乐学。如在教学“分数的初步认识”一节课时,教师设计动画画面:星期天,同学们去交友,伴随着优美欢乐的乐曲,一群天真活泼的小朋友们来到了郊外,他们蹦啊、跳啊,高兴极了。学生们目不转睛地盯着屏幕,注意力特别集中。教师提问:“把9个香蕉和6瓶矿泉水平均分给3人,每人能分得几个”?学生积极发言,教师用动画演示分的'结果,直观地显示出“平均分”这个概念,追问:“把一个生日蛋糕平均分成2份,每人分得多少”?运用动画演示“一半”,“一半”用什么数表示呢?今天我们一起学习新的数――分数,然后引导学生进一步建立分数的概念,促进学生对概念的理解与记忆,在自主提出概念的过程中,培养了学生的创新意识,提高了他们对数学价值的认识,培养了自身的数学应用意识。

  三、自主探究,巩固概念

  多媒体能够集声音、图画、动漫等于一身,让小学数学课堂教学变得更为丰富生动,调动了学生学习数学概念的积极性,使学生自主愉快地参与到教学活动中。自主探究是以小学生作为数学探究学习的主体,通过学生自主分析、探索、质疑、创造等方法来实现课堂学习目标。如在教学“6”的认识时,教师运用课件展示一幅春景图,在优美的音乐声中,教师给学生讲述画面中的内容:春天来了,冰雪融化了,小溪水哗哗地流淌,大地也悄悄地披上了绿装,兔妈妈带着她的宝宝来到草地上玩耍,“同学们,有几只小兔子来玩耍啊?”学生很快地数出有6只小兔,引导同学们认识及书写。课件继续展示,小兔们吃着鲜嫩的青草,嬉戏打闹,兔妈妈就领着他们一起做游戏。兔妈妈要把6只小兔分成两组做游戏(屏幕停),可是小兔们就是站不好。同学们,你们帮一帮他们吧,让他们迅速地分成两组,你知道怎样分吗?共有几种分法?学生用小棒分一分,教师再用课件演示。游戏做完了,兔妈妈又给兔宝宝们出了几道题,你们会做么?课件展示几道形式新颖的巩固练习题,这节课在优美的音乐和动画故事中结束了。学生就在“做”中不知不觉地巩固了概念,为今后自己的学习打下了坚实的基础。

数学概念教学心得体会7

  数学概念就是现实世界中空间形式和数量关系及其本质属性在人们头脑中的反映。在小学数学中所涉及的概念有很多,如:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念以及统计初步知识的有关概念等。那么如何进行概念教学呢?从感性到理性,从具体到抽象是小学生思维的主要特征,因此小学生获得概念的认知心理活动过程是:“充分感知——建立表象——抽象概念——形成概念”。

  一、感知内化,建立表象

  表象是通过感知留下的形象,是感知材料形象概括,为思维抽象概括作准备。因此它是从感知向思维过渡的“桥梁”。在数学概念教学中要十分重视表象这座桥梁的运用,这不仅使教学符合认识发展规律,而且使教学符合儿童发展的特点。因为儿童是用“形象、声音、色彩、感觉”思维的,必须充分运用并发挥表象的作用。如教学“平行线”这一概念,教师如果只是简单告诉学生平行线是两条无限延长、永不相交的直线,学生可能会记住这些文字条文,但不能很好掌握平行线的数学概念的本质属性。只有让学生观察实物,如教室门窗的上下边框、左右边框,书本的横线,拉紧的两条铁丝等。再启发学生:“这些成对直线将它们无限延伸,能相交吗?它们都处在什么位置呢?”促使感知内化,从而在头脑中建立成对直线的表象(在同一平面内),即形象化的平行线。

  二、故设悬念,引出概念

  概念的教学往往是一节课的开端,而故设概念,使学生有一种强烈的求知欲望,这是引入概念的一种常用的方法。如“圆周率”概念的引入,可先让学生量出自己准备的大小不等两个圆直径和周长,并作好记录,然后让学生报出直径的长度,教师很快“猜出”周长的近似长度。学生自然感到惊奇,很想弄清其中的奥秘,从而萌发探求知识奥秘的欲望。教师因势利导,圆的周长总是直径的三倍多一些,人们通常把这个数叫做圆周率。那么,怎样求出“圆周率”呢?我们就来研究这个问题。

  又如“认识分数”(分一分),教师根据课本图设计这样一个问题:“把两个苹果平均分给小明和小青,他们每人可分几个苹果?”分的个数可以用几表示?(每人分一分,可以用“1”表示)小明和小青把其中一个送给邻居王奶奶,剩下1个苹果两人平均分,每人可分多少个?(半个)这半个苹果能不能用我们学过的数表示?(不能)教师指示:我们不能用学过的数(0、1、2、3中任何一个数)来表示“半个”,这就要用一种新的数——分数。在这种融洽的气氛中学生自然就想学习分数这一概念。

  三、直观演示,形成概念

  小学生心理发展的主要特点是:善于记忆具体的事实,而不善于记忆抽象的内容。充分发挥直观表象作为抽象概括的作用,可以通过教师演示学生操作等直观教学方法,来引入概念,弥补抽象思维水平较低的缺陷,有助于形成正确、明晰的概念。

  通过学生动手、动脑进行实际操作,才能刺激学生多种感官的协同参与,这样,既能顺应学生学习心理,又可以使学生在“亲自创造的事物“中愉快地获得真正的.理解。例如,教学“圆环形面积”这一概念时,先让学生各自画一个半径4厘米的圆,再以同圆的圆心,在这个圆内画一个半径小于4厘米的圆,然后动手剪去内圆,留下外圆,得到了一个圆环。教师进一步引导学生“怎样求圆环形面积呢?”由于学生亲自动手操作,很快发现了求圆环形面积的规律:圆环形面积=外圆面积–内圆面积。圆环形的概念明确了,新知识的解答方法也就水到渠成。成功的欢乐是一种巨大的情绪力量,它促进儿童乐于探索的愿望。

  四、在知识系统中巩固概念

  数学教材中的概念,尽管分散在不同章节中出现,但它们总是一环扣紧一环形成知识链条的。在讲清概念之后,向学生揭示概念之间的联系,让学生在知识链条中理解和记忆概念,比孤立理解单个概念,效果好得多。例如教学“因数和倍数”一章中,“整除——因数——倍数——质数——合数”就是这样一条知识链条。要让学生巩固这些概念,应该使学生对这条链条有整体的认识。在相关的一族概念中,有的概念处于关键地位,成为知识网络的纲。上述有关概念,均以“整数”这个概念为基础,这个概念就是纲。要理解和巩固这部分教材中的任何概念,都要紧紧和这个概念联系起来。

  建立知识网络之后,要充分注意概念之间的联系和区别,运用比较、分类、分析等方法引导学生注意各个概念在知识网络中所处的地位。例如“整除”与“不整除”是矛盾关系,“质数”和“合数”是平行关系,“偶数”和“质数”(如2)是部分重合关系,把握好知识的来龙去脉,易于巩固和加深对概念的理解。

  总之,对于基本概念的教学,要遵循小学生心理活动特点和智力发展的规律,从实际出发,采取多种方式、方法进行教学。无论采用何种方法都要以教学内容为中心。设计教学过程要做到重点突出,难点讲清,从本质上帮助学生掌握和理解概念。

数学概念教学心得体会8

  数学知识都是以概念为基础的。要使学生获得系统而又全面的数学知识,必须让学生获得清晰明确的数学概念。教师可以设置正确、合理的教学“目标方向”,让学生理解概念的逻辑性、明确概念的层次性、掌握概念的抽象性、抓住概念的扩展性,经过反复运用,让学生熟能生巧,帮助学生更好地掌握数学知识的内涵与实质。

  心理学认为:正确、合理的“目标方向”是激发人们积极性、提高工作效率的最基本、最重要的因素之一。教师上课时始终围绕例题讲述,采取“零售”数学知识的办法,把数学概念当作“尾巴”来处理,不重视概念的教学,课后布置各种题型,采取题海战术,老师整天忙忙碌碌钻在题库里,学生昏昏欲睡埋到解题中。结果,中高考试卷中有练习过的题目拿得住,而稍有变化的习题就呆住了。其实数学试题是千变万化的,哪能遇上一成不变的题目?事实证明:只要求学生解习题,而不给学生讲透数学概念、实质问题,等于只是给了学生一把对号开锁的钥匙,而不是教给学生解剖锁的结构原理。不交给学生一把钥匙,学生是很难找到窍门的。因此有必要进行系统而又严肃的概念教学,事实上数学知识都是以概念为基础的。要使学生获得系统的数学知识,首先必须获得清晰明确的数学概念。

  一、理解概念的逻辑性

  数学概念可分为两个重要方面:一是概念的“质”,也就是概念的内涵(概念的本质属性);二是概念的“量”,也就是概念的`外延(概念的所有对象的和)。抓住概念的本质特征,把握定义中的关键字句,弄清概念间的区别和它们的内在联系,把握概念的内涵,加深对概念外延的理解。因此,我们在平时的教学中应特别注意把不同的概念联系在一起,进行比较,并从不同侧面加深对概念的理解,使它系统化、网络化,这样就不会造成学生对概念理解的模糊,从而导致错误地运用。相反,有利于学生对知识的贮藏,有利于“牵一发而动全身”。

  二、明确概念的顺序性

  苏科版教材中一般的数学概念,都是通过对实验现象或某些具体的事例的分析,经过抽象概括而导出的,它有一个形成的过程。它们一般是从几个原始的概念或者公理出发,通过一番推理而扩展成为一系列的定义或者定理.而每一个新出现的概念都依赖着已有的概念来表达,或是由已有的概念推导出来的。因此,

  在平时的教学中我们一定要注意概念教学的顺序性。正是这些概念的出现的顺序性才将我们的教材有机地串联在一起,形成知识的网络结构图。

  针对概念形成的阶段性、发展性和连贯性,我们教师教学中应当注意:在学生对某些预备概念模糊不清的情况下,千万不要急于引入新概念,最好先复习涉及新概念的相关预备概念,尤其是对特别重要的、关键性的预备概念,教师要反复强调,以求得学生较为彻底的理解,方可为新概念的导入作出良好的铺垫。如上述的“一元二次方程”的概念中,“一元一次方程”的概念就是关键性的预备知识,学生真正理解了“方程”“整式方程”等概念,方可正确地领会“一元二次方程”的概念,才不至于出现一些低级的错误。

  三、掌握概念的抽象性

  中学数学教材中的许多原始概念,如点、线、面、体、数、常数、变数等等,都是由具体的事物观察然后再抽象出来的。由此可知,概念是人们对感性材料进行抽象的产物;感性认识是形成概念的基础。如果学生没有感性认识或感性认识不完备时,我们就应该借助于实物、模型、教具、图形或形象的语言进行较为直观的教学,从而使学生从中获得感性认识。对于一些概念(属概念),教师可以直接从已知的概念(种概念)中引入,不必再经过取得感性认识的阶段。如有理数的概念,就可以直接从整数、分数的概念中引入。

  四、抓住概念的扩展性

  概念的内涵和外延还存在着“反变”的相依关系,内涵越多,外延就越小;内涵越少,外延就越大。四边形是个大概念,平行四边形是个小概念,正方形是个更小的概念,但正方形的四边相等、四角相等、对角形互相垂直平分且相等的共同属性,就比四边形的共同属性四条边、四个角来得多。

  因此,在指导学生解题的过程中,教师要要求学生不断运用相关的概念组成正确而又恰当的判断,进行逻辑推理;不断加深学生对概念的理解和掌握。这样,我们的学生解题能力才能逐渐得以提高。

  “授之以鱼,不如授之以渔”。教师只有平时重视对数学概念的教学,才能培养出学生的应变能力,才能让学生建立起整个初中知识的结构图,才能让学生真正学会分析问题、比较问题和解决问题,才能让学生从茫茫题海中解脱出来,也才能真正做到“快乐数学”!

数学概念教学心得体会9

  概念是对感性材料的综合,是对事物内在本质的反映。纵观数学的发展过程,一切数学公式、法则、规律的得出都离不开概念。在小学里,数学概念包括:数的概念、运算的概念、数的整除性概念,量的计量概念、几何形体的概念、比和比例的概念、式的概念、应用题的概念、统计。的概念等,共约500多个。这些概念支撑了十二册教科书中所涉及的数与代数、空间与图形、统计与概率、实践与应用等四个领域的庞大的数学体系,不仅是数学基础知识的重要组成部分,也是发展思维、培养数学能力的基础。但是,当前的概念学习还存在着一些问题,如重计算,轻内涵;重结论,轻过程;重课本,轻实践等,这些问题是如何产生的?通过听课、访谈、填写调查问卷等形式,我找到了答案。我认为产生的本质原因是缺失了对数学作为一门科学的学术关照。因此,让数学概念学习栖居在学术的土壤里是一个值得重视和研究的课题。笔者结合教学实践谈三点想法:

  一、从日常数学与学术数学的连接点切入

  数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映,是由实践的需要而产生的。研究数学历史可以发现,任何一个新概念的'产生都一定有着极其广

  阔的背景,有着不得不产生的理由,并且附着着人类进步和数学发展过程中积淀的最闪亮的思想火花。因此,在概念教学中我们一定要深入地研究概念产生的背景,并且分析学术数学与日常数学的区别,从而从本质上理解概念的内涵。

  二、概念解读能深入也能浅出

  研究表明,儿童学习概念一般依据感知——表象——概念——运用的程序,也就是说概念的有意义学习建立在丰富直观的感知基础上。为此,不管教师对概念的解读有多深入,多学术化,在课堂上,我们还是必须通过演示、操作等方式,为学生提供充分的感知体验。

  三、从旧知的锚桩处起航

  数学学科是一门逻辑性很强的学科,这就决定了数学概念相互间的联系非常密切,很多概念的学习就是概念的同化过程,尤其是运算概念。小数、分数的四则运算的意义、法则甚至运算定律都类同于整数四则运算,对这类概念的教学,就要从旧知与新知的连接点入手。

  我读了张奠宙、郑毓信等数学教育专家的新著,指出了数学教育应防止去数学化,而应努力营建以数学为核心的教育。张奠宙先生说:数学教育,自然是以‘数学’内容为核心。数学课堂教学的优劣,自然应该以学生能否学好‘数学’为依据;数学教育啊,可否更多地关注‘数学’的特性!

  受个人专业成长经历的影响,这些年,我对数学课堂的研究和探索集中于数学文化与数学思维上,总想着我的教育能使孩子们的数学素养得以有效地提高。一路行来一路思,而今先生精辟、深遂的论断让我眼前更亮。是呀,数学教育一定是数学与教育学双重价值视野关照的,如果缺失了对数学本质的关照,那么即便是再漂亮的课也只能略逊风骚。以上,我以概念学习为例,谈了我对数学课堂基于数学学术视野的实践与渴望,其实需要数学学术视野关照的又岂止是概念学习,因此,本文也只当是抛砖引玉,希望引起大家的思考。

数学概念教学心得体会10

  数学概念就是现实世界中空间形式和数量关系及其本质属性在人们头脑中的反映。在小学数学中所涉及的概念比较多,如:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念以及统计初步知识的有关概念等(随着年级的升高会越来越多)。这些概念是“双基”教学的核心内容,是基础知识的起点,是逻辑推理的依据,是正确、合理、迅速运算的保证。因此,学生应该正确、清晰、完整地掌握数学概念。那么如何进行概念教学呢?听了杨明丽老师的讲座后受益匪浅。

  一、概念的引入

  从实际引入(也可以说是从直观引入)。小学生认识事物、理解概念主要是凭借事物的具体形象和表像进行的。在概念的引入教学中,教师从比较熟悉的实际事物中,提供足够的直观感性材料,让学生通过看、听、摸、做等,丰富他们的感性认识,使抽象的概念具体化,从而引出概念,同时学生的思维能力也得到了发展。

  二、概念的理解

  概念的理解是概念教学的`中心环节,教师要采取一切手段帮助学生逐步理解概念的内涵和外延,在概念引入的基础上,以足够数量的感性材料,组织学生参与概念的形成过程,通过比较、综合、抽象、概括等一系列逻辑思维活动,使学生在获得知识的同时发展思维能力,以便让学生在理解的基础上掌握概念。

  三、概念的运用

  教学中不仅要求学生理解概念,而且还要求学生能够正确、灵活地运用概念进行判断、推理、计算、作图等,能运用概念分析和解决实际问题。

  (1)自举实例。数学从生活中来又回到生活中去,所以从具体到抽象又回到具体,符合小学生的认识规律,使学生更准确把握概念的内涵和外延。老师们经常使用这种练习方法。如,在学习射线、线段和角后,让学生在自己的身边找一找:哪些物体的表面上有这些图形?

  (2)运用于计算、作图等。掌握概念对计算有指导作用,反之,通过计算对理解和巩固概念也起促进作用。例如,在学习了乘法的运算定律后,就可以让学生简便计算一些习题。再如,在掌握分数的基本性质后,就要求学生能熟练地进行通分、约分,并说明通分、约分的依据;学习了小数的性质后,就可以让学生把小数按要求进行化简或改写;学习了线段、射线和角后,教师安排了按要求画一画:画一条3厘米长的线段、画一个30°的角等。

  (3)运用于生活实践。数学就是服务于生活的,只有让学生把所学习到的数学概念,拿到生活实际中去运用,才会使学到的概念巩固下来,进而提高学生对数学概念的运用技能。

数学概念教学心得体会11

  摘要:

  在中学数学教学中,正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想的基础,搞清概念是提高解题能力的关键。。只要对概念理解的深透,才能在解题中做出正确的判断。因此,在数学教学过程中,数学概念的教学显得尤为重要。学生数学能力的发展取决于他对数学概念的牢固掌握与深刻理解与否。

  关键词:

  数学能力、发展、理解、剖析、揭示

  概念是客观事物本质属性在人们头脑中的反映。数学概念反映现实世界的空间形式和数量关系的本质属性的思维形式。在中学数学教学中,正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想的基础,搞清概念是提高解题能力的关键。只要对概念理解的深透,才能在解题中做出正确的判断。因此,在数学教学过程中,数学概念的教学显得尤为重要。学生数学能力的发展取决于他对数学概念的牢固掌握与深刻理解与否。而在现实中,许多学生对数学的学习,只注重盲目的做习题,不注重对数学概念的掌握,对基本概念含糊不清。做习题不懂得从基本概念入手,思考解题依据,探索解题方法,而是跟着感觉走。这样的学习,必然越学越糊涂,因而数学概念的教学在整个数学教学中有其不容忽视的地位与作用。下面仅结合本人平时的教学实践,谈一点肤浅的认识与体会。

  一、概念的引入:

  1.从学生已有的生活经验、熟知的具体事例中进行引入。如“圆”的概念的引出前,可让同学们联想生活中见过的年轮、太阳、五环旗、圆状跑道等实物的形状,再让同学用圆规在纸上画圆,也可用准备好的定长的线绳,将一端固定,而另一端带有铅笔并绕固定端旋转一周,从而引导同学们自己发现圆的形成过程,进而总结出圆的特点:圆周上任意一点到圆心的距离相等,从而猜想归纳出“圆”的概念。

  2.在复习旧概念的基础上引入新概念。

  概念复习的起步是在已有的认知结构的'基础上进行的。因此,在教学新概念前,如果能对学生认知结构中原有的适当概念作一些类比引入新概念,则有利于促进新概念的形成。例如:在教学一元二次方程时,就可以先复习一元一次方程,因为一元一次方程是基础,一元二次方程是延伸,复习一元一次方程是合乎知识逻辑的。通过比较得出两种方程都是只含有一个未知数的整式方程,差异仅在于未知数的最高次数不同。由此,很容易建立起“一元二次方程”的概念。

  二、分析概念含义,抓住概念本质。

  1.揭示含义,突出关键词。

  数学概念严谨、准确、简练。教师的语言对于学生感知教材,形成概念有重要的意义,因此要特别注意用词的严格性和准确性。教师要用生动、形象的语言讲清概念的每一个字、句、符号的意义,特别是关键的字、词、句,这是指导学生掌握概念,并认识概念的前提。

  如:“分解因式”概念:“把一个多项式化成几个整式的积的形式,这种变形叫把这个多项式分解因式。”在教学中学生往往只注重“积”这个关键词,而忽略了“整式”,易造成对分解因式的错误认识。所以在教学中务必强调,并与学生分析这两处关键词的含义,加深对概念的理解。

  2.分析概念,抓住本质。

  数学概念大多数是通过描述定义给出他的确切含义,他属于理性认识,但来源于感性认识,所以对于这类概念一定要抓住它的本质属性。

  如:“互为补角”的概念:“如果两个角的和是平角,则这两个角互为补角。”其本质属性:(1)必须具备两个角之和为180°,一个角为180°或三个角为180°都不是互为补角,互补角只就两个角而言。(2)互补的两个角只是数量上的关系,这与两个角的位置无关。通过这两个本质属性的分析,学生对“互为补角”有了全面的理解。

  3.剖析变化,深化概念。数学概念都是从正面阐述,一些学生只从文字上理解,以为掌握了概念的本质,而碰到具体的数学问题却又难以做出正确的判断。因此,在教学过程中,必须在学生正面认识概念的基础上,通过反例或变式从反面去剖析数学概念,凸显对象中隐蔽的本质要素,加深学生对概念理解的全面性。

  如:在学习对顶角的概念后,让学生做题:

  (1)下列表示的两个角,哪组是对顶角?

  (a)两条直线相交,相对的两个角

  (b)顶点相同的两个角

  (c)同一个角的两个邻补角前后联系,多方印证,加深认识。

  部分学生对概念的全面理解不可能一蹴而就,而是要经历:实践——认识——再实践——再认识的过程,这是个“正确”与“错误”摇摆不定的过程,更是一个对概念的理解不断深化的过程。事实上,学生在初步学习某一数学概念之后,对概念的理解并不怎么深刻,而是通过对后续知识的学习让学生回过头来再对概念进行加深理解,遵循“循环反复,螺旋上升”的学习原则。

  如:学生刚接触“二次函数”的概念时,仅能从形式上判断某一函数是否为二次函数。但当他们学习了其图象,研究了图象的性质后就能根据a得出图象的开口方向,由a、b确定图象的对称轴,由a、b、c给出图象的顶点坐标。这时对二次函数的概念自是记忆深刻,能脱口而出了。

  三、概念的记忆。

  1.并列概念,举一反三。、如:一元一次方程的概念:“只含有一个未知数,并且未知数的指数为一(次),这样的方程叫做一元一次方程”,清楚了“元”与“次”的含义,则一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通过纵横对比,在类比中找特点,在联想中求共性,把数学知识系统化,学生轻轻松松记概念。

  2.易混淆概念,联系区别。

  任何一个概念都有它的内涵和外延,外延的大小与内涵成反比关系。内涵越多,外延就越小;内涵越少,外延就越大。把握概念的内涵与外延,能大大增加学生对概念的明晰度,提高鉴别能力,避免张冠李戴,为此,把所教概念同类似的相关的概念相比较,分清它们的异同点及联系,也就显得十分重要。如:学完“轴对称”与“轴对称图形”的概念后,可引导学生找出两者之间的联系和区别。联系:两者都有对称轴,如把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形,如把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分成轴对称。区别:“轴对称”是指两个图形成轴对称,主要指这两个图形特殊的位置关系;而“轴对称图形”仅仅是指一个图形,主要指这个

  图形所具备的特殊形状。通过这样的联系与区别,学生加深了对概念的理解,避免混淆,从而提高学生认知概念的清晰度。

  3.从属概念,图表体现。

  有从属关系的概念其外延之间有着互相包含的关系,在复习阶段若以图表的形式表现,能使概念系统化、条理化,有利于学生的记忆和理解。

  四、概念的巩固。

  1.利用新概念复习就概念。如:在四边形这一章中:平行四边形具有四边形所有性质,矩形具有平行四边形所有性质,菱形、正方形具有平行四边形的所有性质,正方形具有矩形、菱形的所有性质。这样链锁式概念教学,既掌握了新概念又加深了对就概念的理解。

  2.加强预习。在课堂教学中优先考虑概念题的安排,精讲精练,讲练结合,合理安排,选题时注意题目的典型性、多样性、综合性和针对性,做到相关概念结合练,易混淆概念对比练,主要概念反复练。

  3.对学生在练习中,课外作业中出现的错误,要抓紧不放,及时纠正。概念教学的重点不是记熟概念,而是理解和应用概念解决实际问题。因此,教师要引导每一位学生清楚的认识到所犯错误是哪一个概念用错了,或者是将哪一个概念的关键词忽略了,今后遇到类似的问题怎么办。即使是其它方面的错误也要找出是否概念不清而致错,予以分析纠正。

  4.每一单元结束后,要进行概念总结。总结后,要特别注意把同类概念区别分析清楚,把不同类概念的联系分析透彻。概念的形成是一个由特殊到一般的过程,而概念的运用则是一个由一般到特殊的过程,它们是学生掌握概念的两个阶段。

  5.运用概念去分析问题和解决问题,是教学过程中的高级阶段,在应用中求得对概念更深层次的理解,以达到巩固的目的,同时也使学生认识到数学概念既是进一步学习数学理论的基础,又是进行再认识的工具。当然应用概念应由易到难,循序渐进,有一定的梯度,以符合学生的认知规律,便于将所掌握的知识转化为能力。

  总之,在数学概念教学过程中,教师只要从教材和学生的实际出发,面向全体学生,耐心地帮助学生掌握逻辑思维的“语言”,逐步提高他们的思维水平,就一定能够增强数学概念教学的有效性,从而提高数学教学质量。

数学概念教学心得体会12

  【教学内容】

  1、例2及相关练习。西师版五年级上册教科书

  【教学目标】

  1、引导学生理解顺时针方向和逆时针方向,并从位置、点、方向、角度这4方面进一步研究旋转,能在方格纸上将简单图形旋转90°。

  2、通过研究旋转,进一步培养学生的抽象思维能力。

  3、让学生感受成功体验,增强学生学好数学的信心。

  【教学准备】

  教师准备视频展示台、多媒体课件;学生每人准备1个钟面、每小组准备1个装有花瓣的信封。

  【教学过程】

  一、概念引入

  教师:昨天,老师到游乐场去拍了一段录像(播放录像:录像里有旋转的风车和旋转的摩天轮及其他的一些游乐项目),这里面有旋转现象吗?

  学生:风车和摩天轮都在旋转。

  教师:你能说说它们是怎样旋转的吗?

  学生1:风车是绕着中间的点顺着旋转的。(课件随学生的回答,演示风车绕着转动的点和转动的方向进行旋转)

  学生2:摩天轮是绕着中间的点顺着旋转的。(课件随学生的回答,演示摩天轮绕着转动的点和转动的方向进行旋转)

  教师:看来同学们以前的知识学得不错,今天我们要继续研究旋转(板书课题)。

  二、概念形成

  1.认识顺时针方向和逆时针方向

  教师:但是刚才同学们说的“顺着旋转”用更准确数学的语言来表达叫“顺时针旋转”。知道什么叫什么“顺时针旋转”吗?

  如果有学生有这方面的经验可以让他先说,然后老师作补充。如果没有学生知道。教师则可按以下方式引导:

  教师:我们可以在钟面上形象地理解。(课件出示一个有指针的钟面)你们还记得钟面上的指针是往哪个方向转的吗?用手比一比。

  抽一位同学用手比。

  教师:指针像这样(课件演示指针转动)转动的`方向就叫“顺时针方向”。明白吗?

  教师:(课件演示指针从a旋转到d)你能说说指针旋转的方向和旋转的度数吗?

  引导学生说出:指针顺时针方向旋转了90°。

  教师:你能再说说风车和摩天轮是怎样转的吗?

  抽学生说(略)。

  教师:不错。和时针旋转方向一致的方向叫“顺时针方向”;你知道和时针旋转的方向相反的方向叫什么方向吗?

  教师:叫“逆时针方向”。(课件指针逆时针转动)拿出手和大屏幕上的指针一起转一转。(课件演示指针从a旋转到b)你又能说说这次指针旋转的方向和旋转的度数吗?

  抽学生说(略)。

  2.深入研究旋转

  教师:刚才我们认识了“顺时针方向”和“逆时针方向”。但只认识这两个方向还不够,这节课我们还要深入地研究。我们以风车为例。(课件出示旋转的风车)

  教师:这个风车转得太快,我们让它转慢一点好吗?(课件让风车慢慢旋转),4张叶片一起转动太复杂了,我们重点研究1张叶片好吗?(课件只剩下1张叶片)现在我们可以让它旋转了。(课件演示风车叶片旋转)

  教师:为了我们方便研究,我们把风车旋转时的几个关键的地方标上字母。

  教师:标上字母以后,(课件给风车标上字母)我们再来看一遍它是怎样旋转的?(课件再演示风车的转动)

  教师:看清楚了吗?这节课我们主要研究这张风车叶片旋转的哪些方面呢?我们要研究叶片在旋转时位置是怎样变化的?绕哪一个点旋转的?旋转了多少度?是往哪个方向旋转的?(教师边说边板书)

  教师:同学们可以以同桌为1个小组,选择自己喜欢的项目进行研究。

  (学生选择项目进行研究,教师巡视,学生研究完后全班汇报)

  教师引导学生汇报时说清楚研究的项目和结果分别是什么?完成板书:

  位置点方向角度

  从位置a绕o点顺时针转90°到位置b

  教师:同学们,你能把大家的研究结果连起来完整地介绍风车是怎样旋转的吗?

  引导学生说出:风车是从位置a绕o点顺时针旋转90°到位置b。

  教师:同学们介绍得真不错!刚才我们是从哪些方面来介绍叶片的转动的呢?

  学生:是从位置、绕的点、方向、角度这几方面来介绍叶片的转动。

  教师:你能用同样的方式来介绍叶片是怎样从位置b转到位置c吗?(课件演示叶片从位置b转到位置c)

  学生先讨论再汇报:叶片从位置b绕o点顺时针旋转90°到位置c。

  教师:在同学们的回答中,位置、绕哪一个点、方向、角度(指示板书)都说得很清楚。你们能不能连起来说一说叶片是怎样从位置a旋转到位置c的?

  学生可能有两种答案:

  学生1:叶片是绕o点从位置a通过两次顺时针旋转到位置c的。

  学生2:叶片绕o点直接顺时针旋转180°也可以到位置c。

  学生的两种说法都是正确的,都应给予表扬,特别是第2种更应鼓励。

  教师:(课件显示下图)这次你觉得叶片还可以怎样旋转到位置c呢?

  学生讨论也可能有两种想法:

  学生1:叶片是绕o点从位置a通过两次逆时针旋转到位置c的。

  学生2:叶片绕o点直接逆时针旋转180°也可以到位置c。

  教师:同学们真不错,能用不同的方式让叶片从位置a旋转到位置c。这两种方式有哪些相同,哪些不同呢?

  引导学生说出:相同的都是从这4方面来研究旋转的,不同的是方向不同。

  教师:叶片可以从位置a顺时针方向旋转到位置c,也可以逆时针方向旋转到位置c。这还能给我们一个启示:在思考问题时,我们从不同的角度去思考,可以训练思维的灵活性。

  三、概念巩固

  1、第31页课堂活动第1题。

  学生独立完成后汇报。(略)

  2、第32页练习七第1,2,3题。

  学生独立完成后汇报。(略)

  四、总结

  1、这节课我们学了些什么?

  2、研究旋转时应从哪几个方面进行研究?

数学概念教学心得体会13

  数学概念是人对客观事物中有关数量关系和空间形式方面本质属性的抽象。数学概念具有抽象性和概括性的特点。

  数学概念是数学知识结构中的基本材料,也是数学认知结构的重要组成部分。在数学教学中,使学生正确掌握数学概念是理解掌握数学原理、形成基本技能的关键,也是培养学生数学能力、发展学生智力的基础。

  小学数学中的概念涉及到数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。

  儿童获得概念的两种基本形式是:概念形成与概念同化。

  1、概念形成:

  所谓概念形成,是指学生从许多具体事例中,以归纳的方式概括出一类实例的本质属性,从而获得概念的一种形式。概念形成的心理过程主要包括辨别、分化、抽象、概括等心理活动。概念形成的认知方式常用于学生初次感知某一概念时,小学低年级学生概念学习为主。以“圆的认识”为例,要使学生形成圆的概念,需要学生从自己的生活经验出发,在生活中找到诸如车轮、硬币、圆桌、钟面等等“圆”的原型,并感知这些物体的共同特征,从而逐步形成圆的表象,归纳出这类形状物品的本质属性:到定点的距离等于定长的点的集合。在学生运用概念形成这一形式获得概念的过程中,要求教师要善于举例,教师为学生提供的例子必须是典型的同时又是学生所熟悉的,并且教师要为学生提供非常充分的实例让学生进行感知,只有在充分感知基础上建立起的概念的表象才是牢固的、完整的。同时教师还必须善于比较和分类,教师要引导学生通过分类呈现出具有共同本质属性的同类事物,通过比较凸显出这类事物与其他事物不同的'本质属性。

  2、概念同化:

  概念的同化是小学生掌握数学概念的又一种基本形式。它是指利用学生认知结构中原有的概念,以定义的方式直接向学生揭示新概念的本质特征,从而使学生获得新概念的方式。以小学中高年级为主。小学生到了中高年级,随着年龄的增长,认知结构中知识和经验的不断积累和智力的不断发展,概念同化的方式逐渐成为他们获得新概念的主要形式。如学生在获得“直角三角形”这一概念时,学生原有的认知结构中,已经有了“直角”和“三角形”的概念,在这里只是将两个已有概念进行组合,直接向学生揭示“有一个角是直角的三角形是直角三角形。”简言之,概念同化就是以概念解释概念。在用这种形式帮助学生获得概念时,教师需要弄清学生的原有认知基础,更要找准新概念的知识生长点。在此基础上,教师通过不断地追问帮助学生逐步澄清概念的本质属性。

  不管使用何种形式帮助学生获得新的概念,都要符合学生的认知规律。根据皮亚杰的认知发展阶段论,小学生正处于具体运算阶段。在这一阶段,儿童形成了初步的运算结构,出现了逻辑思维。但思维还直接与具体事物相联系,离不开具体经验,还缺乏概括的能力,抽象推理尚未发展,不能进行命题运算。此阶段正处于以直观形象思维为主向抽象思维为主的过渡阶段,他们的思维带有很多的直观形象性,他们是有了所感才有所思,然后才有所知。因此此阶段的儿童要完成对一个概念的获得,必须遵循“感知—表象—抽象”的过程进行。“感知”属于直观动作思维,需要学生通过演示、观察、比较、操作等直观的动作来完成,这一过程可以帮助学生在头脑中建立起对于概念的“表象”,形成表象的过程属于具体形象思维,“表象”的建立过程是从直观到抽象的过渡阶段,学生对于概念本质属性的抽象不是对具体事物本身的抽象,而是将学生头脑中形成的“表象”出来进行一系列的分析、综合、抽象、概括等抽象逻辑思维,从而确定事物的本质属性,获得概念。整个过程是一个从直观到抽象,从感性到理性,抛去非本质抓住本质属性的过程。学生必须经历这一完整的过程才能够真正掌握一个概念。

  学生概念的获得过程,强调数学学习与儿童的生活联系起来;强调数学学习是儿童的一种发现、操作、尝试等主动实践活动,强调数学学习的体验性;强调数学学习也是一种认识现实世界的一般方法的学习;强调数学学习是群体交互合作与经验分享的过程。

  概念教学的整体要求是:使学生准确地理解概念、使学生牢固地掌握概念、正确地运用概念。要达成这样的教学目标,必须要遵循儿童的认知规律,让学生经历完整的“感知—表象—抽象”的思维过程。以此为依据我们总结出一套完整的概念教学的模式,此模式分为五个环节:

  环节一:联系实际,引入概念。

  概念可以从小学生比较熟悉的事物入手引入。如二年级学习长方形时,可通过学生观察他们所熟悉的桌面、书面、黑板面等事物,从而引入概念。也可以在旧概念的基础上引入新概念。当新旧概念联系十分紧密时,不需要从新概念的本义讲起,而只需从学生已学过的与其有关联的概念入手,加以引申、指导,得出新的概念。如教学约数和倍数的概念时,可从“整除”这一概念入手,引出概念。

  环节二:感知实例,建立表象。

  教师为学生提供典型的、熟悉的感性材料,作为形成概念的物质基础。让学生在充分的观察、比较、操作、演示的基础上逐步建立起概念的表象。

  环节三:提取表象,抽象概念。

  引导学生将上一环节建立起的表象进行提取,并加以分析、综合、抽象、概括,找出全体材料共同的本质属性。如学习梯形的概念时,可针对如上所提供的形式不同的梯形,找出其共同之处。(1)都是四边形,(2)每个四边形仅有一组对边平行。合并上述两个要点,即可得出:只有一组对边平行的四边形叫做梯形。

  环节四:结合应用,深化理解。

  数学概念一旦形成,就要注意在实践中的应用,让学生将所形成的概念带入具体的情境中进行巩固。这一过程是从抽象再次回到具体的过程,这一环节的目的是使学生能够学以致用。此环节教师要精心设计练习,引导学生巩固概念。练习的类型可以有:①应用新概念的练习。②关键问题重点练习。③对比练习。

  环节五:扩展延伸,发展概念。

  此环节要充分利用好概念的变式与反例,让学生在对比、辨析的过程中明确概念的内涵与外延,从而深化对于概念本质属性的理解。

  在整个概念教学模式中,对于教师的要求:

  1、要认真做好上课前的准备工作,为学生提供形成科学概念的实物、教具、模型等,为学生建立概念创造条件。

  2、概念的抽象要适时,要准确把握抽象概括的时机。要以足量的感性材料为基础,让学生在头脑中形成清晰的表象。抽象不可过早,过早容易使学生死记硬背,不理解,影响课堂教学的效率。

  3、概念形成之后,要通过比较,搞好概念的类比,形成概念系统。为此,教师要站在全册、全学年、乃至全套小学数学教材的高度审视和把握本节教学内容。

  对学生的要求:

  1、要求学生养成乐于观察、勤于观察、善于观察的良好习惯。在观察中把握本质属性,形成清晰的表象。

  2、要积极参与概念的抽象概括。抽象概括时,学生要克服被动地接受心理,积极思考、大胆发言。要能在教师的引导、疏导、启发、点拨、订正中,去伪存真,使认识不断地升华,以便在认识概念中逐步学会抽象概括的方法。

  概念教学的模式固然有利于我们更好地帮助学生形成新的概念,但是作为教师,我们却不能够模式化,不能拘泥于死板的模式,只有真正弄懂了所学概念的本质,充分了解了学生的认知基础,深刻把握了学生的认知规律,当遇到具体的概念教学内容时,我们才能结合具体情况做出科学的教学设计,取得良好的教学效果。

数学概念教学心得体会14

  20xx年10月21日,在明珠小学听了两节数学课,使我深刻地感受到了小学数学课堂教学的生活化、艺术化。就此,谈一谈我个人听课的一点肤浅的体会。

  两节课无论是新课引入还是在课堂教学中教师把整个学习过程都交给学生,把活动作为教学的基本组织形式,力争让学生在独立观察、认真思考、相互交流、小组讨论、交流等多种形式的活动中,真正成为学习的主人。整堂课,体现了新的'教学理念,以学生为本,以学生的发展为本,生学有所得。更能体现数学是生活中一种实践性很强的课程,进而让学生感受到数学的重要性,生活处处皆数学。

  这些课在教学过程中创设的情境,目的明确,为教学服务。例如:实验小学的袁树芳老师上《异分母加减法》时,袁老师提到了防止沙漠化,就要植树造林培养学生保护环境的意识,让学生体会数学来源于生活并运用于生活,激发学生学习兴趣。

  古人云:“学贵有疑,小疑则小进,大疑则大进。”牛晓坤老师提出疑问,设置悬念,启迪他们积极思考,激发学生的求知欲,激起他们探索、追求的浓厚兴趣。促使学生的认知情感由潜伏状态转入积极状态,由自发的好奇心变为强烈的求知欲,产生跃跃欲试的主体探索意识,实现课堂教学中师生心理的同步发展。揭示知识的新矛盾,让学生用数学思想去思考问题,解决问题。使他们在质疑中思考,“山重水复疑无路”,在思考中学到知识,寻求“柳暗花明又一村”的效果。总之,这些展示课的授课教师注重从学生的生活实际出发,为学生创设现实的生活情景,充分发挥学生的主体作用,引导学生自主学习、合作交流的教学模式,让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念。在以后的教学中,我将更加努力学习,取长补短。

数学概念教学心得体会15

  一、小学数学阶段数学概念在教学之中具有一定的重要作用

  因为学生比较小,遇到困难如果没有教师的正确引导,慢慢就会做了“鸵鸟”,久而久之对数学就没有了兴趣,尤其是数学概念方面的学习。这就需要教师在尊重学生主体地位的同时,发挥好教师引导这一主体地位。

  1、在小学的数学课堂之中,所研究的数学教学一般涵盖了数学的概念、概念的运用以及概念的理解

  关于小学生数学概念方面的教学一定要有合理的策略,概念都是经过实践之间检验得来的,最后变成了公理以及公理下的相关定理,教会小学生学习概念就是为了让学生们对概念的综合使用有一个相对具体的了解,数学概念对于学生们打好数学基础尤为重要,因为概念涵盖的是数学精华中的“结晶体”,教会学生们学好数学就要教会他们怎样记住并且掌握和理解这个概念所指,在一定程度上,起到了理清学生思维的作用。对于相同类型的习题能够运用概念和定义,灵活的解答,节省学习时间的同时,更能为以后数学思维的培养打下基础。

  2、数学本身的发展和所有学科有着千丝万缕的关系

  无论是数学的历史还是数学所涉及的领域,教师都要在学生小学的时候就做好基础工作,才能为以后的学习节省不少时间和精力,对于小学生数学概念的学习,教师要懂得和历史相结合,小学生比较喜欢听故事,教师为了让学生记住这方面的数学概念,可以将数学历史相结合的方式,增进学生们的数学理解,数学思维建立,这对于以后敏捷思维的拓展以及创新思维和发散思维、逻辑思维具有一定的基础作用,因为数学概念也是讲求条件的,数学只有满足一定的条件,足够充分才可以运用这样的概念。各种思维的综合培养能够让学生在以后的发展中成为更加符合社会发展的综合型人才。

  二、注重现实,优化数学概念的教学策略

  对于学生们的.数学教学,教师应该注重数学思维以及独立思考能力的培养,这样便于学生对于定义的理解,教师在进行讲课的时候更要充分发挥学生的主观能动性,调节课堂气氛,增进学生学习的积极性。

  1、兴趣是最好的老师

  教师一定要注意学生数学兴趣的培养,进行数学授课的时

  候,在因材施教的前提下,要懂得灵活运用数学手段,进行“现实教学”,也就是对于学生们数学概念延伸到生活之中,就像小学生学的应用题,小学生对于应用题这一环节都比较头疼,这就需要教师进行思维的正确引导,可以把题引入生活之中,让教科书之中的习题生活化,不要过于墨守成规,适度地进行创新教育才能更好地培养学生们的兴趣,而小学的数学概念又和其他别的概念有着很大的区别,教师在进行数学概念讲解的时候,一定要注意要学生接触到相关的触感材料,让小学生充分了解这个概念的时候,更能了解概念之中的,从而适当发散学生的思维,教会学生从不同层面去逐层考虑。

  2、教师可以适当地运用图形辅助教学

  这样的教学策略有助于学生们对于数学概念的相关理解,语言是能让学生和教师沟通的一种意见表达工具,语言在现代化的数学教学中更是发挥着十分重要的作用,因为它能增进教师和学生之间的和谐关系,教师要注意课堂气愤的调节,以及与学生之间的默契培养,这样对于学生理解数学概念以及学好数学概念有一定的促进作用,教师可以实现声画结合的方式,进行图文并茂地表达数学概念所涵盖的相关内容,真正程度上做到寓学于乐,让学生们在轻松和谐的气氛中,掌握好数学概念的使用,并且能够学有所用。教师在进行讲课的时候,一定要多多提问,概念由学生们自己来总结,这样的方式一定程度上可以促进学生对概念的掌握程度。

【数学概念教学心得体会】相关文章:

概念课教学心得体会11-18

概念课教学心得体会锦集11-12

函数的概念教学反思(精选27篇)01-05

实用的数学教学心得体会数学教学经验及体会11-16

数学教学心得体会11-03

数学教学心得体会11-29

[经典]数学教学心得体会09-24

数学教学的心得体会04-17

流程管理的概念06-04

班级管理概念06-18