数学学习计划

时间:2023-05-09 15:07:08 学习计划 我要投稿

【精华】数学学习计划模板锦集8篇

  人生天地之间,若白驹过隙,忽然而已,我们的工作又将在忙碌中充实着,在喜悦中收获着,此时此刻需要制定一个详细的计划了。想学习拟定计划却不知道该请教谁?以下是小编为大家收集的数学学习计划8篇,希望能够帮助到大家。

【精华】数学学习计划模板锦集8篇

数学学习计划 篇1

  一、教材方面

  本册教学内容包括乘法、升和毫升、三角形、混合运算、平行四边形和梯形、找规律、运算率、对称、平移和旋转、倍数和因数、用计算器探索规律、解决问题的策略和统计共计13个方面的内容。内容很多,而且互相独立,联系不大。而在这些内容中,有些内容是非常重要的,如乘法、三角形、混合运算、平行四边形和梯形、运算率、倍数和因数、解决问题的策略这些内容是非常重要的,而用计算器探索规律,只要求学生了解即可。

  具体安排:

  乘法方面,一方面,通过计算比较,感受积的变化规律。P5第5题通过填表、比较,可以体会乘数变化引起积的变化规律,并帮助理解乘数末尾有0的乘法笔算简便算法。另一方面,用题组以旧带新,让学生学会新的口算。以上所说的口算,也是通过计算、比较,体会新的口算的方法,促进学生在知识上获得进一步发展。

  升和毫升,认识升和毫升,首先要了解容量,但对于学生来说,容量这个词既可能有过接触,又是难以建立的`一个概念。P10例题安排了三个小题,让学生联系实际情景,在具体的比较中体验、感受容量的含义。先通过比较两个茶杯哪个盛水多一些,向学生说明盛水多的容量比较大,体会杯子能盛水的多少就是它的容量大小,并掌握升和毫升的进率。

  三角形,1、掌握三角形及其基本特征;2、认识三角形的底和高,并会做已知底上的高;3、了解三角形的稳定性;4、知道三角形内角和是180度,并会求角的度数。

  混合运算,本单元教学整数三步计算的混合运算,这是在四上学习了两步计算混合运算基础上安排的,也是整数混合运算的最后一个单元。本单元的内容分三段安排:第一段通过例1教学不含小括号的三步混合运算;第二段通过例2教学含有小括号的三步混合运算;第三段通过例3教学含有中括号的三步混合运算。教材结合混合运算,安排学生解决一些简单的三步计算实际问题,提高学生应用数学知识解决简单实际问题的能力。

  运算率,熟练的掌握乘法分配率,并能运用定律进行简便计算。

  倍数和因数,理解倍数和因数的意义;掌握2、3、5倍数的特征;理解奇数和偶数;素数和合数。

  解决问题才策略,让学生用画图的策略探索解决图形实际问题的方法。启发学生画图表示问题的信息,引导学生探寻思路、解决问题,体验通过画图解决图形问题的策略。

  二、学生方面

  我班共有学生20人,期中成绩优异的有:周宏敏、刘欣、白嘉豪、宋雅琴、刘洁等,学习困难的有宋佳明、刘伟、刘晓杰等,大多学生成绩处于中等,对知识的掌握较好。复习中应以全体学生为主,面向全体学生,重基础知识。

  三、措施

  期末复习是教师引导学生对所学习过的知识材料进行再学习的过程,在这个学习过程中,要引导学生把所学的知识进行系统归纳和总结,弥补学习过程中的缺漏,使所学的数学知识条理化、系统化,从而更好地掌握各部分知识的重点和关键。要重视知识的系统化,避免盲目做题,搞题海战术,确实抓好复习工作,提高教学质量。

  1、抓住复习重点,突出难点。小学所学数学知识中,计算和应用题是复习重点,突破这两个重点,坚持每日进行计算的练习,提高速度和准确率。

  2、对常考易错题需多讲多练。常考易错题多是教学内容中的基础知识、重点知识,而往往又是学生一不细心就错的题,从实际考虑,这类题的失误、丢分,都会让人感到太可惜、不应该。所以,在总复习时,我们不能忽略此类题的复习,只有通过复习,才能让学生学会细心抓住关键之处正确解题。

  3、在复习过程中,要精心选择和设计练习题,加强解题方法的指导,提高学生解题能力。复习重点要抓住二点:一是要把握教材内容,善于提炼和归纳教材的知识要点和训练重点;二是要根据教材的知识要点和训练重点,精心选择和设计练习题。练习题不在于多,一道好的题目,往往能“牵一发而动全身”,起到事半功倍的作用。

数学学习计划 篇2

  要学好数学,要把握好以下几要点,对于数学的学习成绩的提高,自学能力的养成肯定 有促进的。计划地去学习,有目标才动力去学习。

  (一)制定合理学习计划,及时检查落实。

  1.制定符合自己的实际情况的学习计划。

  2、要有明确的学习目标。

  通过一个阶段的学习,要达到什么水平,掌握那些知识等,这 些都是在制定学习计划前应该非常明确。

  3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来 促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。

  4、 要合理安排计划。 计划不能太古板, 可根据执行过程中出现的新情况及时做适当调整。

  5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学 习目标。

  (二)做好课前预习,提高听课效率。

  通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先 理解感知新课的内容(如概念、定义、公式、论证方法等) ,为顺利听懂新课扫除障碍。

  1、预习的最佳时间是晚上的 8:00 到 9:00 这一段时间,单科的预习的时间一般控制 在 15 分钟到 30 分钟左右。

  2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的 概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考, 注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系 中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过 练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。

  (三)听好每一节课,解决疑点,吸纳新知。

  耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认 真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调 的语气, 听老师对每节课的学习要求; 听知识引人及知识形成过程; 听懂重点、 难点剖析 (尤 其是预习中的疑点) ;听例题解法的思路和数学思想方法的体现;听好每节课的小结。

  眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作, 接受老师某种动作的提示、以及所要表达的思想。

  心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。课堂上用心思 考,跟上老师的教学思路,领会、分析老师是如何抓住重点,解决疑难。老师在讲例题时, 在脑海中跟着老师,每一步都得自己想通。多思、勤思,随听随思;深思,即追根溯源地思 考,大胆的提出问题;善思,由听和观察去联想、猜想、归纳;树立批判意识,学会反思。

  口到:就是在老师的指导下,主动回答问题或参加讨论,也可避免走神。同时有利于知 识的记忆。

  手到:记笔记服从听讲,要掌握记录时机,就是在听、看、想、的基础上划出课文的重 点,记下讲课的要点、疑问、记解题思路和方法以及自己的感受或有创新思维的见解、课前 疑点的答、记小结、记课后思考题的分析。 笔记要有重点。记录形式多种多样可以在书上或笔记本上划线(直线、曲线) 、圈点、作标 记、使用不同颜色的笔(如红色就比较显眼) 、记录的格式不同、书写的字体不同,这些都 是记笔记的`好方法。

  (四)听好每一节课,解决疑点,吸纳新知。

  耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认 真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调 的语气, 听老师对每节课的学习要求; 听知识引人及知识形成过程; 听懂重点、 难点剖析 (尤 其是预习中的疑点) ;听例题解法的思路和数学思想方法的体现;听好每节课的小结。

  眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作, 接受老师某种动作的提示、以及所要表达的思想。

  心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。课堂上用心思 考,跟上老师的教学思路,领会、分析老师是如何抓住重点,解决疑难。老师在讲例题时, 在脑海中跟着老师,每一步都得自己想通。多思、勤思,随听随思;深思,即追根溯源地思 考,大胆的提出问题;善思,由听和观察去联想、猜想、归纳;树立批判意识,学会反思。

  口到:就是在老师的指导下,主动回答问题或参加讨论,也可避免走神。同时有利于知 识的记忆。

  手到:记笔记服从听讲,要掌握记录时机,就是在听、看、想、的基础上划出课文的重 点,记下讲课的要点、疑问、记解题思路和方法以及自己的感受或有创新思维的见解、课前 疑点的答、记小结、记课后思考题的分析。 笔记要有重点。记录形式多种多样可以在书上或笔记本上划线(直线、曲线) 、圈点、作标 记、使用不同颜色的笔(如红色就比较显眼) 、记录的格式不同、书写的字体不同,这些都 是记笔记的好方法。

  (五)做好小结或总结,提升对知识的领悟。

  在进行单元小结或学期总结时,做到:

  一看:看书、看笔记、看习题。通过看,回忆、熟悉所学内容;

  二列:列出相关的知识点的框架,标出重点、难点,列出各知识点之间的关系;

  三做:有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发 现问题、解决问题。

  最后归纳出体现所学知识的各种题型及解题方法(倍速在章末有归纳) 。学会总结是数学学 习的最高层次。平时放学回家,坚持复习当天所学的内容,加深印象。并做相应的练习题以 巩固上课所学的知识。

  对所学知识系统地小结,具体如下:小结的频率:最好就是每周一次,将本周所学的知识进 行系统归纳。小结的内容:可以把识记知识(如概念、公式等)系统化,也可以对题型作归 纳,并附上自己的解题心得和注意事项等。当然可以参考章末小结。

  (六)做练习题强化、巩固新的知识结构。

  复习中要适当看点题、做点题。选的题要围绕复习的中心来选。在解题前,要先回忆 一下过去做过的有关习题的解题思路,在这基础上再做题。

  (七)合理安排学习时间

  要注意劳逸结合, 这也是保证时间利用效率的一个重要方面, 只有会休息的人才会工作。

数学学习计划 篇3

  一、加强学生的思想教育工作。

  小学六年级即将进入期末复习阶段,这一阶段学生是否具有良好的思想状况,对于学生能够顺利的通过复习、考试及毕业,起着重要的推动作用。针对愈临近毕业,学生心理愈焦虑的特点,教师要用温馨的语言激励学生,营造“平常”氛围,避免过度紧张,来稳定学生的情绪。班主任和科任教师经常找学生谈心,及时消除学生不良情绪,为学生强心、镇定,使他们保持良好心情进行复习、考试。针对不同层次的学生应施以不同的思想教育。“导”——后进生找自己优势,努力提高成绩;“抚”——中等生加强自信心教育,补薄弱学科;“激”——优等生引进竞争机制。班主任要召开毕业班家长会,指导家长正确地对待某些重点中学的选拔考试,要对自己孩子的智力、学习成绩、兴趣有个客观正确的认识,要教会学生合理安排学习活动,注意用脑卫生,保证休息和睡眠;及时给学生以辅导和答疑,引导学生正确分析考试成败,不要在升学上盲目攀比。

  二、早打算、早预防,摸清家底,给班上的学生排队。

  教师对班级的每一个学生进行摸底排查,按照学生学习成绩的情况、智力发展的能力把学生分成优秀、一般、临界生、学困生四类。给学生排好了队,还得针对各层次学生的具体情况,制定出拔高性的目标。临界生和学困生是我们抓的重点,对他们的目标要注重过程管理。

  三、苦干、实干加巧干,用自己辛勤的耕耘,换取丰硕的成果。

  1、教师要精心钻研教材,寻找小学数学知识间的联系点,形成知识的脉络化、系统化。

  小学阶段知识循序渐进,各知识间的联系密切。在复习时,教师要抓住知识间的内在联系,有的放矢得进行分类指导,查漏补缺。具体地说,就是对所学知识进行系统整理,并通过知识间的串联性和连接点,将学生复习前零散无序、模糊不清的概念和题型纵横沟通,形成条理化、系统化和网络化。以有利于促进学生重新消化、理解和掌握。在具体的教学过程中,老师要做好以下三点环节:

  (1)、有的放矢点要害,即在复习时,要要抓住复习的重点、难点和关键点,引导在点子上,如在进行“用不同的知识解应用题”时,关键是引导学生想可以用哪些知识来解答,如方程、比例知识、按比例分配、算术法等,然后让学生说思路,列式解答。

  (2)、分类讲解找缺陷。数学复习课中,运用分类指导的方法对所学知识进行条块式的研究是深化学生知识,查找知识误区的重要方法。

  (3)、自我点化活气氛。复习过程实际上是学生自我点化、自我巩固、自我提高的过程。创设一个宽松、和谐流畅的教学环境,对复习效果会大有裨益。在课堂教学中,允许学生交头接耳、互相讨论,甚至于移位交流经验,自由结合,互助合作,愉快地接受知识。

  2、讲练结合,精讲多练,拓展视野。

  讲和练是小学复习课主要的学习方法,教师要精讲,学生要多练,也就是说在复习课上,教师要有计划、有目的、有指导地让学生多做综合性的复习题、练习题。以实现由学会到会学的思维过程。在具体的教学过程中,教师要弄清每节课的目的作用,分清主次、难易。对本节课的内容哪些该指导,哪些是学生易出错的要做到心中有数,努力提高教学效果。

  四、学生要形成严明的学习规范。

  1、学生的学习态度。

  人的知识才能是通过学习获得的。实践证明,学习者的学习效率,很大程度上依赖于自主学习的能力,这种能力还制约和影响着其他能力的拓展,关系着一个人一生的成长。在教学中充分体现学生的主体地位,调动学生的积极性和创造力,使之获得主体思想的解放、主体能力的发展,能积极主动地自主学习,才会取得事半功倍的效果。

  2、学生作业的'布置、收交。

  对学生作业的布置要求少而精,注重作业的层次性。对成绩优秀的学生,要布置综合性强的拔高性的练习题;对学习成绩一般的学生,要布置模仿性强的练习题,对学习成绩较差的学生,要布置一般的基础题。但是不管是哪一个层次的学生,作业都必须按时完成上交。

  3、学生作业的批改。

  教师对学生完成的作业,在批改时也得有方法。对成绩优秀的学生,可以简略地批改,对学习成绩一般的学生,则要认真地、详细地批改,对学习成绩较差的学生,更要精心地当面批改,指出学生作业中存在的问题,讲明白错误的原因。

  4、学生作业的修改。学生作业完成后,对存在的问题必须弄明白原因,认真地进行批改,杜绝以后出现类似问题。

  五、临界生和学困生的管理

  针对学困生的学习困难,任课教师制定详细的学困生转化计划、措施和方案。在课堂教学中,积极为学困生创造自我发展的机会与空间,让学困生和成绩好的学生机会均等,甚至适当增加学困生的展示机会。学困生数学成绩差,对他的自信心影响很大,老师可以主动让他收作业,培养他的自信心和对数学的学习兴趣。

  让班里的优秀生和学困生结对子,一对一的进行帮助,让学困生学有榜样,学习中解决不了的困难,同学们积极给予帮助,对优秀生又是一种促进,在班级中形成一股"比、学、赶、帮、超"的学习氛围。

  及时捕捉学困生的闪光点,大力进行表扬鼓励,激发其上进心。教师在班级管理中,大胆使用学困生,让他们感到天生我材必有用;在班级生活中拉近学困生与优秀生之间的心理距离。使他们真切感到我也是班级的一名成员。

  加强对学困生的家访工作。通过"家长联系簿,家长热线"等及时架起学校与家庭联系的桥梁,要求家长对孩子多鼓励、多表扬,有了错误不急于批评,而是帮助寻找原因,并经常跟老师交流,努力配合教师的教育教学工作。

数学学习计划 篇4

  一、任教学科:数学

  二、研究的课题:美育与未成年人思想道德建设研究

  三、研究目的:

  通过研究学校美育和德育的关系,提高学生的审美素质和道德素质,完善学生的心理结构。

  四、课题比研究的主要内容:

  在数学课堂教学中创设有利于学生审美能力提高的情境,通过美育促进学生德育的.健康发展。探索美育与德育的内在关系,寻求以美促德的规律,创新德育新模式。

  五、研究措施:

  1、认真系统地学习有关的理论。认真地学习一些相关的专著和他人的经验性文章,在学习中提高认识,在学习中转变陈旧的观念。

  2、努力提高自身专业素养,建立自己的课题博客专栏。尽可能多地与同行们交流探讨。必须下大力气,投入足够的时间和精力学习并经常性运用多媒体教学手段,提高自身运用现代教育技术能力。

  3、认真备课、精心设计作业,进行踏实细致地调查分析。

  4、注重课题研究过程,在学校研究计划安排下,积极参与课题研讨课的上课、听课和评课工作。主动与全组成员一起探讨成败得失,提高自己的理解和研究能力。

  六、工作安排:

  (1)积极参加学习。

  (2)制定个人课题研究计划。

  (3)参加课题培训学习。

  (4)积极参与课题组开展的课题“研讨课”、“示范课”的听评课等校本教研活动。

  (5)注意及时收集、整理、上传资料。

数学学习计划 篇5

  各位同学,当你打开这份学习计划时就意味着你已经迈开了考研的第一步,凡事预则立不预则废,科学的学习计划是我们考研最终取得成功的有效保障,数学复习尤其如此。

  考研数学满分为150分,在研究生入学考试中具有举足轻重的作用。考研数学主要包括高等数学、线性代数、概率论与数理统计三个科目,合理分配时间至关重要。

  其中,基础阶段主要是系统复习,夯实基础。通过对高等数学、线性代数、概率论与数理统计本科教材的完整复习,以及配套练习基础过关和能力优化的题目训练,把基本概念、基本理论、基本方法的内涵与外延弄清楚,加强对知识点的把握,提高解题速度及正确率。

  一、 复习进度

  每天至少应该花2.5-3.5个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用1.5-2个小时左右的时间理解掌握概念、定义等,用1-1.5小时左右来做习题巩固。对于数学基础较薄弱的同学建议每天再加一个小时的复习时间用来做习题并总结。

  主要目标:吃透考研大纲的要求,做到准确定位,事无巨细地对大纲涉及到的知识点进行地毯式的复习,夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。

  从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都有可能考到,甚至某些不太重要的内容也可以以大题的形式在试题中出现。由此可见,任何的投机取巧到头来只会坑害自己,明智的做法应当是参照考试大纲,全面复习,不留遗漏。因此我们复习的主要思路就是以考纲为纲,先把数学课本从头到尾认真地学习一遍,主要先不针对重点和难点,而是一视同仁地对照课本和辅导资料对知识点进行事无巨细的复习。对一些重要的概念,公式要进行理解基础上的记忆,顺便做一些比较简单的习题,这些课后习题和辅导资料习题对于总结一些相关的解题技巧很有帮助,同时也有助于知识点的回忆和巩固。

  二、考研数学基础阶段复习重点

  第一,结合教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。

  第二,要大量练习,充分利用历年试题,重视总结归纳解题思路、套路和经验。数学考试不需背诵,也不要自由发挥,全部任务就是解题,而基本概念、公式、结论等也只有在反复练习中才会真正理解与巩固。做题时特别要强调分析研究题目和解题思路。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

  第三,要初步进行综合性试题和应用题训练。数学考试会出现些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。

  三、学习方法解读

  (1) 学习而不是复习

  对于大部分同学而言,由于高等数学学习的.时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍学习,要拿出重新学习的劲头亲自动手去做,去思考。

  (2) 复习顺序的选择问题

  我们建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。

  (3)注意基本概念、基本方法和基本定理的复习掌握

  结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析表明,考生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果这个基础打不牢,其他一切都是空中楼阁。

  (4)加强练习,重视总结、归纳解题思路、方法和技巧

  数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。

  (5)不要依赖答案

  学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。

  (6)强调积极主动地亲自参与,并整理出笔记

  注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。

数学学习计划 篇6

  一、指导思想

  高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。

  强化高中数学主干知识的'复习,形成良好知识网络。整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。

  第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.

  “二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.

  二、时间安排:

  1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。

  2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。

  3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。

数学学习计划 篇7

  大家知道,凡成绩优秀的同学,他们既是过程的决策者,又是过程的管理者和执行者,他们的学习过程总是有条不紊,亦张亦弛。而学习困难的同学,要么整天无所事事,要么手慌脚乱,碰碰这样,拿拿那样,心神不定,恍惚焦虑。怎样制定好计划呢?下面以数学学科为例,谈谈计划的类型以及制定计划的注意事项。

  一、宏观计划树立目标

  树立远大理想并非空话,俗话说:“求高得中,求中得低。”一个人有宏伟目标,一定会为实现这个目标而勤奋努力。因为努力,必然丰富人生的知识、能力和精神积沉。为建立人生大厦打下坚实的基础

  一个人有了理想,学习就会干劲倍增;一个人有了理想,人生就乐观向上;一个人有了理想,就信心十足;一个人有了理想,就毅力无穷。

  没有人生计划的人,就会显得碌碌无为,精神上显得未老先衰,做事情得过且过,经常抱怨,甚至时常搞点恶作剧,寻求一时精神刺激,因为没有学习的源动力,所以疲于应付,天长日久就成为落伍者而心安理得。

  我们走访了部分优秀的学生,他们有的坦然理想,雄心勃勃;有的虽不善言表,但胸怀大志。总之他们都有目标在激励!希望还没有人生目标或目标不明的同学,赶快根据自己的兴趣爱好和能力特点确定人生目标,让人生旅途有盏明灯。

  二、中期计划条块分明

  中期计划也就是阶段性计划。举个例子吧,我国的经济发展,按照时间的顺序,设计为一个个五年规划。在每个五年计划中,明确提出经济建设的任务,需要达到的目标,所要采取的措施等等。这样,我们就思路清晰,抓住重点,统筹安排,稳步前进。

  作为高中学生,为了制定好学习数学的阶段计划,可以把每学年作为一个阶段进行制定。

  高一年级我们要脚踏实地的完成课本知识的学习,发展相应的数学能力,达到一定的考核目的。完成与教材配套的教学参考书一套,并且钻研一至两本数学扩展书籍。每学期至少参加一次社会实践活动,并将获得的数据进行处理,建立数学模型,尝试解决,完成实践报告。还可以写出数学学习的阶段性学习小结,也可以试着撰写数学小论文等。这样就能夯实基础,发展能力,学会学习,促进创新。

  高二年级应该基本完成高中数学知识的学习任务,提出考核目标。利用两大假期对知识和方法进行梳理,形成网络。找出学习的薄弱环节,并尽早查漏补缺。在高二学年中,要对某些重要数学问题进行专题学习,展开研究,力争突破。注重学法总结,保证学习高质高效;注意数学思想方法的钻研,用辩证的思想指导我们的数学学习,为高三的综合复习打下坚实的知识、方法和思想基础

  高三年级是高考的综合复习阶段。时间紧,任务重,压力大。计划显得更为重要。必须做到:研究考纲,明确要求;重视课本,夯实双基;梳理知识,形成网络;关注生活,学会应用;错题建档,查漏补缺;抽象概括,发展能力;挑战新境,提升学法;引申变化,探究创新;重视考试,提高考技;心理调适,决胜高考。

  三、短期计划切实可行

  短期计划一般是指周计划,学习者可以非常具体的制定自己的时间安排,他是操作性很强的计划。就是一周内阅读什么参考书,完成什么作业,重点研讨哪个章节的内容,完成那个章节的错题整理,归纳梳理那部分知识和方法等,一一例举清楚,定好完成时间,一旦计划定好后,严格执行,不找借口,保质保量完成。

  短期计划,要分不同的时段有所侧重,不要千篇一律。例如在放假时要劳逸结合,注意查漏补缺,安排好实践活动,做好调查研究工作;考试前的一周要安排知识梳理,归纳总结,查阅笔记,考前模拟等;考试后的一周要进行经验总结,教训反思,薄弱知识和方法的补救,学习方法的调整等;学期中途的一般时间段里,应有条不紊安排知识学习,方法训练,做好自学、互学,做好感兴趣的专题研究,或每隔一段时间写一篇数学小品文章等。以上更要求我们在制定计划时,考虑到相应时间的重点任务,安排时注意轻重缓急,同时也要考虑到一些突击性的任务的安排。

  短期计划要克服一些不妥的安排。如,凭兴趣偏科安排,导致短项学科被忽视,形成恶性循环。还有为了快速提高成绩,急功近利,时间安排太紧,执行起来过度疲劳,效益降低,影响学习情绪和身体健康,应保证张弛有度,应对自如。

  四、及时计划保证落实

  即时计划一般指日计划,他是将短期计划进行适当分解后,落实到具体每天的任务,以及每天的.即时任务构成的计划,他是非常具体的,具有可操作性和可执行性,是最现实的。

  制定日计划要服从老师的教学进度与要求。把与教学进度同步的任务优先安排,并保证完成,如果新授的内容还不清楚的情况下去做其他的事情,会得不偿失,事倍功半。如果新学的内容已经得心应手,学有余力,也可以适当安排自主学习的内容。

  制定日计划要学会平衡。有的同学学习被动,老师抓得紧就多投入,老师抓的松些就少投入,甚至不闻不问。殊不知,数学一天不练习,就会影响思维速度,拿到题目就会反应慢,上手迟缓且容易错,必须学会自我调节,做到拳不离手,曲不离口,“数学天天见”。

  完成日计划要不折不扣。一旦计划定好以后,必须坚决执行,保证完成。不能找种种借口拖延计划的完成,必须今日事今日毕。任务不能积累,因为明天又有新的任务在等待着你。每天10道题可以克服困难,完成任务。如果几天积累到一起,就是几十道题,似乎没有办法完成了,有时就会横下一条心——干脆不做!丧失了信心和斗志。

  学好数学,计划先行,希望大家定好计划,坚持不懈,养成良好的学习习惯,取得数学学习的成功!

数学学习计划 篇8

  学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)

  学习时间:3月份-6月份

  学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容

  学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。

  学习计划:

  一、3月24号上午9:00----11:00

  不定积分

  1.原函数、不定积分的概念;

  2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;

  3.会求有理函数和简单无理函数的积分.

  定积分

  1.定积分的概念和性质,定积分中值定理;

  2.定积分的换元积分法与分部积分法;

  3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;

  4.反常积分的概念与计算;

  5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.

  :本章的基础课后习题

  二、3月31号上午9:00----11:00

  微分方程

  1.微分方程及其阶、解、通解、初始条件和特解等概念;

  2.变量可分离的微分方程及一阶线性微分方程的解法;

  3.齐次微分方程的解法;

  4.线性微分方程解的性质及解的结构;

  5.二阶常系数齐次线性微分方程的解法;

  6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.

  作业:本章的基础课后习题

  三、4月7号上午9:00----11:00

  来总部阶段测评

  四、4月14号上午9:00----11:00

  多元函数微分学

  1.二元函数的概念与几何意义;

  2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;

  3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;

  4.多元复合函数一阶、二阶偏导数的求法;

  5.隐函数存在定理,计算多元隐函数的偏导数;

  6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.

  作业:本章的基础课后习题

  五、4月21号上午9:00----11:00

  重积分

  1.二重积分的概念和性质,二重积分的中值定理;

  2.会利用直角坐标、极坐标计算二重积分.

  级数

  1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;

  2.几何级数与级数的收敛与发散的条件;

  3.正项级数收敛性的比较判别法和比值判别法;

  4.交错级数和莱布尼茨判别法;

  5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;

  6.函数项级数的收敛域及和函数的概念;

  7.幂级数的收敛半径、收敛区间及收敛域的求法;

  8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;

  9.函数展开为泰勒级数的充分必要条件;

  10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

  作业:本章的基础课后习题

  六、4月28号上午9:00----11:00

  行列式

  1.行列式的概念和性质,行列式按行(列)展开定理.

  2.用行列式的性质和行列式按行(列)展开定理计算行列式.

  3.用克莱姆法则解齐次线性方程组.

  作业:本章的基础课后习题

  对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式

  七、5月5号上午9:00----11:00

  矩阵

  1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.

  2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.

  3.方阵的幂与方阵乘积的行列式的性质.

  4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.

  5.伴随矩阵的概念,用伴随矩阵求逆矩阵.

  6.分块矩阵及其运算

  作业:本章的基础课后习题

  八、5月12号上午9:00----11:00

  总部考试

  九、5月19号上午9:00----11:00

  向量与线性方程组

  1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.

  2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.

  3.非齐次线性方程组解的结构及通解.

  4.用初等行变换求解线性方程组的方法.

  5.维向量、向量的线性组合与线性表示的概念

  6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.

  7.向量组的极大线性无关组和向量组的秩的概念和求解.

  8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.

  作业:本章的基础课后习题

  十、5月26号上午9:00----11:00

  矩阵的特征值和特征向量

  1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.

  2.规范正交基、正交矩阵的概念以及它们的性质.

  3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.

  4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的`方法.

  5.实对称矩阵的特征值和特征向量的性质.

  作业:本章的基础课后习题

  二次型

  1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.

  2.正交变换化二次型为标准形,配方法化二次型为标准形.

  3.正定二次型、正定矩阵的概念和判别法.

  作业:本章的基础课后习题

  十一、6月2号上午9:00----11:00

  考试

  十二、6月9号上午9:00----11:00

  随机事件和概率

  1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.

  2.概率、条件概率的概念,概率的基本性质.

  3.会计算古典型概率和几何型概率.

  4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.

  5.事件独立性的概念与计算.

  作业:本章的基础课后习题

  随机变量及其分布

  1.随机变量的概念,分布函数的概念及性质.

  2.独立重复试验的概念与有关事件概率的计算.

  3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.

  4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.

  5.随机变量函数的分布.

  作业:本章的基础课后习题

  十三、6月16号上午9:00----11:00

  多维随机变量及分布

  1.多维随机变量的概念,多维随机变量的分布的概念和性质.

  2.二维离散型随机变量的概率分布、边缘分布和条件分布.

  3.二维连续型随机变量的概率密度、边缘密度和条件密度.

  4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.

  5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.

  6.两个随机变量简单函数的分

  作业:本章的基础课后习题

  十四、6月23号上午9:00----11:00

  考试

  十五、6月30号上午9:00----11:00

  随机变量的数字特征

  1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.

  2.会运用数字特征的基本性质,并掌握常用分布的数字特征.

  3.随机变量函数的数学期望.

  4.切比雪夫不等式.

  作业:本章的基础课后习题

  大数定律和中心极限定理

  1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

  2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)

  作业:本章的基础课后习题

  样本及抽样分布

  1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.

  2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.

  3.正态总体的常用抽样分布.

  作业:本章的基础课后习题

  矩估计和最大似然估计

  1.参数的点估计、估计量与估计值的概念.

  2.矩估计法(一阶矩、二阶矩)和最大似然估计法.

  作业:本章的基础课后习题

  7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。

  7月底到8月中旬:暑假强化班

  学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。

【数学学习计划】相关文章:

数学的学习计划03-22

学习数学的计划05-04

初中数学的学习计划03-19

数学学习计划03-19

暑假数学的学习计划03-21

小学数学学习计划03-17

数学学习计划【热门】03-24

【精】数学学习计划03-24

关于数学学习计划04-01

有关数学学习计划03-29