- 定积分证明题方法总结 推荐度:
- 相关推荐
证明的方法总结
总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以促使我们思考,快快来写一份总结吧。我们该怎么写总结呢?以下是小编为大家整理的证明的方法总结,希望对大家有所帮助。
证明的方法总结1
数列极限的证明
数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。
微分中值定理的相关证明
微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:
1。零点定理和介质定理;
2。微分中值定理;
包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。
3。微分中值定理
积分中值定理的作用是为了去掉积分符号。
在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。
方程根的问题
包括方程根唯一和方程根的个数的讨论。
定积分等式和不等式的证明
主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。
积分与路径无关的五个等价条件
这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。
☆方法篇☆
结合几何意义记住基本原理
重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如20xx年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。
因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
借助几何意义寻求证明思路
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如20xx年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)—g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。
再如20xx年数学一第18题(1)是关于零点存在定理的'证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1—x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
逆推法
从结论出发寻求证明方法。如20xx年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。
在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=lnxx—lnxa—4(x—a)/ex,其中eF(a)就是所要证的不等式。
证明的方法总结2
一、 不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法
二、 定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
三、 定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
四、 定积分的估值及其不等式的`应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则 >= ()dx
2) 利用被积函数所满足的不等式比较之 a)
b) 当0 2. 估计具体函数定积分的值 积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a)<= <=M(b-a) 3. 具体函数的定积分不等式证法 1) 积分估值定理 2) 放缩法 3) 柯西积分不等式 ≤ % 4. 抽象函数的定积分不等式的证法 1) 拉格朗日中值定理和导数的有界性 2) 积分中值定理 3) 常数变易法 4) 利用泰勒公式展开法 五、 变限积分的导数方法 一、不定积分的概念和性质 若F(x)f(x),则f(x)dxF(x)C, C为积分常数不可丢! 性质1f(x)dxf(x)或 df(x)dxf(x)dx或 df(x)dxf(x) dx 性质2F(x)dxF(x)C或dF(x)F(x)C 性质3[f(x)g(x)]dx 或[f(x)g(x)]dx 二、基本积分公式或直接积分法 基本积分公式 f(x)dxg(x)dx g(x)dx;kf(x)dxkf(x)dx. f(x)dx kdxkxC xxdx1x1C(为常数且1)1xdxlnxC ax edxeCadxlnaC xx cosxdxsinxCsinxdxcosxC dxdx22tanxCsecxdxcsccos2xsin2xxdxcotxC secxtanxdxsecxCcscxcotxdxcscxC dxarctanxCarccotx C()1x2arcsinxC(arccosxC) 直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。 三、换元积分法: 1.第一类换元法(凑微分法) g(x)dxf((x))(x)dxf((x))d(x) 注 (1)常见凑微分: u(x)f(u)du[F(u)C]u(x). 111dxd(axc), xdxd(x2c),2dc), dxd(ln|x| c) a2x1dxd(arctanx)d(arccotxd(arcsinx)d(arccosx) 1+x2 (2)适用于被积函数为两个函数相乘的情况: 若被积函数为一个函数,比如:e2xdxe2x1dx, 若被积函数多于两个,比如:sinxcosx1sin4xdx,要分成两类; (3)一般选择“简单”“熟悉”的那个函数写成(x); (4)若被积函数为三角函数偶次方,降次;奇次方,拆项; 2.第二类换元法 f(x)dxx(t)f((t))(t)dtf((t))(t)dtt1(x)G(t)Ct1(x) 常用代换类型: (1) 对被积函数直接去根号; (2) 到代换x1; t (3) 三角代换去根号 x atantxasect、 xasint(orxacost) f(xdx,t f(xx,x asect f(xx,xasint f(xx,xatant f(ax)dx,ta x f(xx,t 三、分部积分法:uvdxudvuvvduuvuvdx. 注 (1)u的`选取原则:按“ 反对幂三指” 的顺序,谁在前谁为u,后面的为v; (2)uvdx要比uvdx容易计算; (3)适用于两个异名函数相乘的情况,若被积函数只有一个,比如: arcsinx1dx, u v (4)多次使用分部积分法: uu求导 vv积分(t; 1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数. 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的'单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0, 则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 一、原函数 定义1 如果对任一xI,都有 F(x)f(x) 或 dF(x)f(x)dx 则称F(x)为f(x)在区间I 上的原函数。 例如:(sinx)cosx,即sinx是cosx的原函数。 [ln(xx2) 原函数存在定理:如果函数f(x)在区间I 上连续,则f(x)在区间I 上一定有原函数,即存在区间I 上的可导函数F(x),使得对任一xI,有F(x)f(x)。 注1:如果f(x)有一个原函数,则f(x)就有无穷多个原函数。 设F(x)是f(x)的原函数,则[F(x)C]f(x),即F(x)C也为f(x)的原函数,其中C为任意常数。 注2:如果F(x)与G(x)都为f(x)在区间I 上的原函数,则F(x)与G(x)之差为常数,即F(x)G(x)C(C为常数) 注3:如果F(x)为f(x)在区间I 上的一个原函数,则F(x)C(C为任意常数)可表达f(x)的任意一个原函数。 1x2,即ln(xx2)是1x2的原函数。 二、不定积分 定义2 在区间I上,f(x)的带有任意常数项的原函数,成为f(x)在区间I上的不定积分,记为f(x)dx。 如果F(x)为f(x)的一个原函数,则 f(x)dxF(x)C,(C为任意常数) 三、不定积分的'几何意义 图 5—1 设F(x)是f(x)的一个原函数,则yF(x)在平面上表示一条曲线,称它为f(x)f(x)的不定积分表示一族积分曲线,它们是由f(x)的某一条积分曲线沿着y轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x的点处有互相平行的切线,其斜率都等于f(x). 在求原函数的具体问题中,往往先求出原函数的一般表达式yF(x)C,再从中确定一个满足条件 y(x0)y0 (称为初始条件)的原函数yy(x).从几何上讲,就是从积分曲线族中找出一条通过点(x0,y0)的积分曲线. 四、不定积分的性质(线性性质) [f(x)g(x)]dxf(x)dxg(x)dx k为非零常数) kf(x)dxkf(x)dx( 五、基本积分表 ∫ a dx = ax + C,a和C都是常数 ∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 ∫ 1/x dx = ln|x| + C ∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1 ∫ e^x dx = e^x + C ∫ cosx dx = sinx + C ∫ sinx dx = - cosx + C ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C ∫ tanx dx = - ln|cosx| + C = ln|secx| + C ∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C ∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C ∫ sec^2(x) dx = tanx + C ∫ csc^2(x) dx = - cotx + C ∫ secxtanx dx = secx + C ∫ cscxcotx dx = - cscx + C ∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C ∫ dx/√(a^2 - x^2) = arcsin(x/a) + C ∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C ∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C ∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C 六、第一换元法(凑微分) 设F(u)为f(u)的原函数,即F(u)f(u) 或 f(u)duF(u)C 如果 u(x),且(x)可微,则 dF[(x)]F(u)(x)f(u)(x)f[(x)](x) dx 即F[(x)]为f[(x)](x)的原函数,或 f[(x)](x)dxF[(x)]C[F(u)C]u(x)[f(u)du]因此有 定理1 设F(u)为f(u)的原函数,u(x)可微,则 f[(x)](x)dx[f(u)du] 公式(2-1)称为第一类换元积分公式。 u(x)u(x) (2-1) f[(x)](x)dxf[(x)]d(x)[f(u)du]u(x) 1f(axb)d(axb)1[f(u)du]f(axb)dxuaxb 摘要:结合实例分析介绍了不定积分的四种基本计算方法。为使学生熟练掌握,灵活运用积分方法,本文将高等数学中计算不定积分的常用方法,简单进行了整理归类。 关键词:积分方法 第一类换元法第二类换元法 分部积分法 不定积分是高等数学中积分学的基础,对不定积分的理解与掌握的好坏直接影响到该课程的学习和掌握。熟练掌握不定积分的理论与运算方法,不但能使学生进一步巩固前面所学的导数与微分的知识,而且也将为学习定积分,微分方程等相关知识打好基础。在高等数学中,函数的概念与定义与初等数学相比发生了很多的变化,从有限到无限,从确定到不确定,计算结果也可能不唯一,但计算方法与计算技巧显得更加重要。这些都在不定积分的计算中体会的淋漓尽致。对不定积分的求解方法进行简单的归类,不但使其计算方法条理清楚,而且有助于对不定积分概念的理解,提高学习兴趣,对学好积分具有一定的促进作用。 1 直接积分法 直接积分法就是利用不定积分的定义,公式与积分基本性质求不定积分的方法。直接积分法重要的是把被积函数通过代数或三角恒等式变形,变为积分表中能直接计算的公式,利用积分运算法则,在逐项积分。 一、原函数与不定积分的概念 定义1.设f(x)是定义在某区间的'已知函数,若存在函数F(x),使得F(x)或dF f(x) (x)f(x)dx ,则称F(x)为f(x)的一个原函数 定义2.函数 f(x)的全体原函数F(x)C叫做f(x)的不定积分,,记为: f(x)dxF(x)C f(x)叫做被积函数 f(x)dx叫做被积表达式C叫做积分常数 “ 其中 ”叫做积分号 二、不定积分的性质和基本积分公式 性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即 f(x)dxf(x);df(x)dxf(x)dx. 性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即 f(x)dxf(x)C, 或df(x)f(x)C 性质3. 非零的常数因子可以由积分号内提出来,即 kf(x)dxkf(x)dx (k0). 性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即 f(x)g(x)dxf(x)dxg(x)dx 基本积分公式 (1)kdxkxC(k为常数) (2)xdx 1 1 x 1 C (1) 1 (3)xlnxC x (4)exdxexC (6)cosxdxsinxC (8)sec2xdxtanxC (10)secxtanxdxsecxC (12)secxdxlnsecxtanxC (14)(16) 11x 11x 2 (5)a x dx a x lna C (7)sinxdxcosxC (9)csc2xdxcotxC (11) cscxcotxdxcscxC (13)cscxdxlncscxcotxC (15) 1x 2 2 xarctanxC xarcsinxC xarcsinxC 三、换元积分法和分部积分法 定理1. 设(x)可导,并且f(u)duF(u)C. 则有 f[(x)](x)dxF(u)C 凑微分 f[(x)]d(x) 令u(x) f(u)du 代回u(x) F((x))C 该方法叫第一换元积分法(integration by substitution),也称凑微分法. 定理2.设x数F (t)是可微函数且(t)0,若f((t))(t)具有原函 (t),则 xt换元 fxdx fttdt 积分 FtC t 1 x 回代 1 FxC. 该方法叫第二换元积分法 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的'典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。 ●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a 定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx) 【证明的方法总结】相关文章: 定积分证明题方法总结05-31 勾股定理的证明方法及常用公式02-03 有效的读书方法总结08-17 学习方法心得总结12-09 体能训练方法总结08-19 误工证明及收入情况证明06-01 中长跑的训练方法总结08-04 三级证明贫困证明05-08 个人存款证明 证明书06-09证明的方法总结3
证明的方法总结4
证明的方法总结5
证明的方法总结6
证明的方法总结7